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Abstract
In this paper, we present a new method for removing shadows from images. First, shadows are detected by in-
teractive brushing assisted with a Gaussian Mixture Model. Second, the detected shadows are removed using an
adaptive illumination transfer approach that accounts for the reflectance variation of the image texture. The con-
trast and noise levels of the result are then improved with a multi-scale illumination transfer technique. Finally,
any visible shadow boundaries in the image can be eliminated based on our Bayesian framework. We also extend
our method to video data and achieve temporally consistent shadow free results. We show that our method is fast
and can generate satisfactory results for images with complex shadows.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

Although shadows provide important visual cues for per-
ception of shape, occlusion, etc, shadow-free images will
help improve the performance of computerized tasks such
as object recognition, image enhancement, and video objec-
t tracking [BTSD78, XG12, FHLD06]. Shadow removal is
also important in image editing and processing tasks. Al-
though shadow removal becomes increasingly needed, it is
still a challenging research problem. Shadows in a scene can
be quite complex, and the changes of the occluding objects,
inter-reflections, reflectance variation, as well as the intensi-
ty and colour variation of the illumination, all have effects
on the shadowed scene. Thus, shadow removal using a sin-
gle shadow removal model is a difficult task. In addition, the
computational complexity of shadow removal calculations
can be prohibitively high for high resolution images.

In this paper, we address the problem of shadow detection
and removal from a single image. To determine whether a
pixel is dark due to shading or the albedo (reflectance) in-
volves some degree of image understanding. For natural im-
age with complex scenes, automatic shadow detection is a
difficult problem. In computer graphics community, one fea-
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sible approach to detect the shadow for shadow removal and
editing is to involve appropriate user interaction. We iden-
tify shadow areas using a Gaussian Mixture Model (GMM)
brush, which finds pixels that are similar to the user-specified
shadowed regions according to the appearance similarity.
This technique applies only minimal user assistance and
achieves satisfactory shadow detection results.

With the detected shadowed regions and selected lit re-
gions, we carry out shadow removal from a single image
using an adaptive multi-scale illumination transfer method.
Inspired by the color transfer technique [RAGS01] and the
affine shadow formation model [SL08], we apply the illumi-
nation of lit regions as the guided information to recover the
illumination information in the shadowed regions. Instead
of using a uniform parameter for the shadow removal mod-
el [SL08], we introduce a novel illumination transfer tech-
nique using adaptive recovery parameters, which takes the
image reflectance variation into account. As different im-
age textures have different reflectance, our method recovers
the edge information and texture detail much better than [S-
L08]. To handle extremely complicated shadowed scenes,
based on a multi-scale image decomposition, we developed
a multi-scale illumination restoration model, which can fur-
ther improve the detail recovering and reduce the noise in
the recovered regions.
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At the shadow boundaries, the shadow intensity usually
changes more rapidly than in the interior of the shadow. Fur-
thermore, complicated shadow boundaries are hard to be ac-
curately detected in a complex scene. Thus, the boundaries
of the shadow require special treatment to achieve contin-
uous illumination effects along the boundaries regions. To
produce a seamless transition between the original and the
recovered regions, we propose a Bayesian shadow bound-
aries estimation approach to eliminate the shadows and il-
lumination discontinuity along the boundaries, which pro-
duces faithful results and avoids modifying the image con-
tent of the boundary regions.

The presented methods can be easily extended to video
shadow removal. The GMM brush based shadow detec-
tion, multi-scale illumination transfer and shadow bound-
aries processing can be applied to video data with little mod-
ification. For video shadow removal, besides of removing
the detected shadow of each frame, we also present tech-
niques to preserve the shadow free video temporally consis-
tent, which makes our method a potential applicable video
shadow removal tool.

The main contributions of our work are as follows: 1)
Present a shadow detection method using GMM brush,
which can efficiently detect the complex shadow scenes with
minimal user interaction. 2) Introduce a multi-scale illumi-
nation restoration model for shadow removal which effi-
ciently derives a shadow-free image and avoids the loss of
texture detail. 3) Solve the illumination discontinuity prob-
lem along the shadow boundaries using a Bayesian shadow
estimation approach.

2. Related work

Many shadow detection and removal methods have been de-
veloped, a complete review of existing works is beyond the
scope of this paper, we refer readers to [LG08, GDH11, A-
HO11] for excellent overviews on these methods.

Shadow detection: Many automatic shadow detection
methods have been presented. Many existing methods are
motivated by physical formulation models of illumination
[MFS08,FHLD06]. For example, Finlayson et al. [FHLD06]
compared edges in the original RGB image to edges found
in an illuminant-invariant image. This method can work
quite well with high-quality images and calibrated sen-
sors, but often performs poorly for consumer photograph-
s [LEN10]. Several data-driven approaches also have been
proposed that learn to detect shadows based on training im-
ages [ZSMT10, LEN10, GDH11]. Although these methods
work well for shadow detection, but still performs poorly
for detecting complex shadow scenes automatically, for ex-
ample, the scenes with soft shadows and complex texture
structure. More automatic shadow detection algorithms re-
fer to the survey paper [ANBSE11].

Semi-automatic shadow detection methods also have been

proposed, these method involve the appropriate user assis-
tance [WT05,WTBS07,LG08,SL08]. Wu and his colleagues
[WT05,WTBS07] applied the user-specified quadmap to di-
vide the input image into four regions, definitely shadowed
regions, definitely nonshadowed regions, uncertain region-
s, and excluded regions (where the shadow-casting object
is present). Liu and Gleicher [LG08] used a brush tool to
specify the shadow boundary, thus the image is divided into
three areas: definite umbra area, definite lit ares, and bound-
ary. Shor et al. [SL08] applied iterative region growing pro-
cess from the given shadow seed to detect shadowed region-
s. This method applied the alpha matting approach [LLW08]
to compute a complete binary mask of the shadow region-
s, which was time-consuming for processing high resolution
images. The region growing method is also not convenient
for selecting disconnected similar shadow areas. Our GM-
M shadow detection brush can select disconnected similar
shadow areas which is common in complex shadow scenes.

Shadow removal: Many shadow removal methods have
been proposed. One of the most popular approaches in shad-
ow removal is proposed in a series of papers by Finlayson
and colleagues [FHLD06,FHD06,FDL04,FF05]. Finlayson
and colleagues treated shadow removal as a reintegration
problem based on detected shadow edge and produced some
impressive results. However, the reintegration method de-
pends on precise detection of shadow edges, without careful
parameter tuning, inaccurate shadow edges may produce un-
pleasing results. Furthermore, these methods do not consider
the self-shadowing and the effect of the ambient illumina-
tion, which makes these methods not work well for recover-
ing the fine texture detail. Finlayson et al. [FF06] also pre-
sented a further simplification method, where they replaced
the integration by scaling the shadow with a single constan-
t factor. Once shadowed areas are detected, the shadow can
be removed by multiplying a suitable scalar to the shadowed
pixels to cancel the effect of the illumination change. Arbel
and Hel-Or [AHO07] took surface geometry into account
when computing the scale factors, which helped to preserv-
ing texture in both umbra and penumbra areas. This method
works well for processing uniform shadows. More recent-
ly, Arbel and Hel-Or [AHO07] further improved their ap-
proach to process nonuniform shadows, curved and textured
surfaces.

Several shadow removal methods based on color trans-
fer technique [RAGS01] are presented [LG08, SL08]. Liu
and Gleicher [LG08] constructed a shadow-effect free and
texture-consistent gradient field for the shadow and lit area,
respectively, with the mean and deviation of the gradients
in the shadow and lit regions, they recovered the shadow-
free image for the shadow area by solving a Poisson equa-
tion similar to [FHLD06]. Although solving Poisson equa-
tion can be accelerated [Aga07], it is still not convenient to
process image with many disconnected shadow regions, es-
pecially for narrow shadow regions. Shor et al. [SL08] first
identified shadowed and lit areas on the same surface in the
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(a) (b) (c) (d)

Figure 1: Shadow regions detection and lit region specification. (a) Scribbles on the shadowed regions (F) and lit regions (B),
F and B are used as training data for shadow detection, (b) detected shadow, (c) specified lit regions (L), L is used to estimate
the adaptive parameters in the shadow removal approach, (d) shadow removal results.

scene, and used these areas to estimate the parameters of an
affine shadow formation model, then by applying the color
transfer technique [RAGS01] to produce a shadow-free im-
age. This paper produces high quality shadow-free image,
however, as pointed in [SL08], when the shadow is cast onto
a surface consisting of complicated texture with very strong
self shadowing effects, and strong variations in color, one s-
ingle set of affine parameters used in [SL08] are unable to
remove the shadow in a satisfactory manner.

Shadow removal also can be considered as a matting prob-
lem [WT05, WTBS07, GDH11]. Both [WT05] and [WTB-
S07] applied user-specified quadmap to simplify the shad-
ow removal optimization. For example, Wu et al. [WTB-
S07] performed the shadow removal in two steps. They first
computed an approximate shadowless image based on col-
or transfer techniques [RAGS01] with the hints in quadmap,
then they used the shadowless image to define an optimiza-
tion function (consisted of a color term and a smoothness
term) to receive the final shadow removal and extraction re-
sults. Both [WT05] and [WTBS07] can receive robust shad-
ow matte extraction while maintaining texture in the shad-
owed region. To process complex scenes, these two methods
still may not recover the image detail in the shadow areas.
After detecting shadows, Guo et al [GDH11] treated shad-
owed pixels as foreground and nonshadowed pixels as back-
ground, and applied matting technique of Levin et al. [LL-
W08] to recover the shadow coefficients. Then they calculat-
ed the ratio between direct light and environment light and
generated the recovered image by relighting each pixel. This
approach can produce high-quality shadow free image, even
for some soft shadows, this method also works well. How-
ever, this method also does not take the reflectance variation
into account, and it also can not recover the texture detail
well.

Shadow editing: Several shadow editing methods also
have been proposed. Mohan et al. [MCT07] proposed a
shadow editing tool for a single-input image by fitting a gra-
dient domain shadow edge model to the shadows. Besides
enabling users to remove the shadows, this method also can
simulate a variety of lighting conditions, such as ambient-
only lighting and shadows from synthetic occluders, for
shadow manipulating. Chuang et al. [CGC∗03] introduced
a shadow matting and compositing equation which consid-
ered the input image as a linear combination of a shadow-
free image and a shadowed image. This method works well
for seamless shadow composition.

3. Shadow detection

Image segmentation methods such as Grabcut [RKB04] also
can be applied for interactive shadowed regions detection.
However, in each segmentation processing, Grabcut [RK-
B04] produces a closed segmentation contour, thus, only
one closed shadowed region is detected. For image with
many disconnected shadow areas, this method is tedious. We
would like to develop an algorithm to detect disconnected
shadow areas simultaneously with little user interaction.

We present a new GMM brush for shadow detection. G-
MM is a probability density function composed of a set
of Gaussian models, and is a widely used model in im-
age and video analysis for the description of color distribu-
tion [RKB04]. The GMM is modeled using a full-covariance
Gaussian mixture with K components (typically K = 5 ):
G(~x) = Σ

K
k=1 pkgk(~x), where ~x is a D dimension vector, pk

is the mixing coefficients satisfying Σ
K
k=1 pk = 1, and gk(~x)

is the Gaussian density function. Using the GMM model as
the image representation, we present a GMM brush for de-
tecting shadow interactively.

c© 2013 The Author(s)
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Figure 2: (a) Input image with shadow, (b) the shadow de-
tection result without using multi-scale GMM brush, (c) the
shadow detection result using multi-scale GMM brush.

We first cluster the input image using the mean-shift clus-
tering algorithm to create small regions (on average 80 pix-
els in size) on the input image. The image is clustered based
on pixels similarity measure defined in the feature space of
input data set. We define the similarity between the pixel-
s using both spatial locality (x,y) and color value (r,g,b)
of pixel. Each pixel p is represented as a five-dimensional
feature vector ~p = (r,g,b,x,y), which constitutes the feature
space of the input data set. The similarity measure between
two pixels pi and p j is defined as zi j = exp(−‖~pi− ~p j‖2).
The mean-shift clustering can be accelerated [XL10], and it
requires about 1 second for an image with size of 720×480
to complete the clustering. With the clustering as a prepro-
cess, some abandon scattered dark points can be clustered
into nearest cluster, these points would otherwise be select-
ed incorrectly as shadowed regions.

As global brightness of the image is an effective cue for
detecting shadow [BA03], with the image brightness we
calculate the shadow density ς to show the degree of the
light’s effect [BA03]. The density ς and color space chan-
nels (r,g,b) constitute a four-dimensional feature space. For
each cluster, we compute the average density ς̄ and average
channels (r̄, ḡ, b̄) of the pixels contained in the cluster. We
define a GMM brush on the four-dimensional feature vector
(ς̄, r̄, ḡ, b̄), which handles image similarity measure between
the user-selected shadowed pixels and the rest pixels to iden-
tify the shadowed regions.

We use strokes to specify both some shadowed regions F
and some lit regions B from the image as the training da-
ta, as illustrated in Figure 1. Then we build GMM models
GMM(F) and GMM(B) for both shadowed regions F and
lit regions B, respectively. Let µF and µB be the mean GM-
M probability value of all pixels in F and B. Let ωF (c) and
ωB(c) be the probability value that cluster c belongs to F and
B, respectively. The confidence that cluter c being F can be
evaluated as H(c) = φ · |ωF (c)−µF |+ϕ · |ωB(c)−µB|. The
weights φ and ϕ are defined as the weighted sum of its simi-
larity between cluter c and each cluster in the stroked cluster
set in similar way as [XY∗11]. Using these techniques, clus-
ter c can be efficiently classified as shadowed regions or lit
regions by evaluating H(c): if H(c)> δ, c belongs to the F ;
otherwise, c belongs to B. The parameter δ can be tuned to
control the amount of selected shadowed regions.

The image noise may cause problems in shadow selec-

tion. Since progressively coarser image levels increase the
degree of abstraction in the resulting image [FAR07], we
can build a more robust GMM brush on the coarse image
with detail layers attenuated, and to provide a more consis-
tent shadow regions selection. We construct M progressively
coarser images I1, · · · , IM for the input image I using an edge
preserving filter [FAR07, FFLS08, TM98]. Then we build a
GMM brush on the coarsest image level IM for shadowed
region selection. From our experiments, we find out that by
setting M = 3 generates good results. We call this method
multi-scale shadow detection. In the top row of Figure 1,
our multi-scale GMM brush eliminates the appearance noise
interfering, and detect the shadow in complex background
effectively. In Figure 2, the shadow detection result using
multi-scale GMM brush is more accurate than the results
without using multi-scale GMM brush.

The presented GMM brush is capable of achieving consis-
tent shadow detection results, that is, the GMM brush sup-
ports selection of disconnected shadow areas, while these are
common situations in complex shadow images. As illustrat-
ed in bottom row in Figure 1, using minimal user interac-
tivity, with the similarity propagation property of the GM-
M brush, the disconnected shadow areas are selected effec-
tively. Note that the interactive image segmentation method
Grabcut [RKB04] can also detect the shadowed regions in
the bottom row in Figure 1, however, more user interaction
is required. Note that for some complex images, we perform
the shadow region detection in an iterative process, and the
user can refine initial estimates with additional strokes.

4. Shadow removal model

In image formation equation [BTSD78], an image I(x) at
the point x in the scene is the pixelwise product of its two
corresponding intrinsic images:

I(x) = R(x)L(x)

where L(x) and R(x) are the illumination and the reflectance
(albedo) at the same point x.

Assuming a scene whose shadows are cast due to a sin-
gle primary source of illumination, if a point x in the scene
is unshadowed (lit), the illumination can be described as a
sum of two terms, L(x) = Ld(x) + La(x), where Ld(x) is
the direct illumination and La(x) is the indirect (ambien-
t) illumination. Thus the intensity on point x is: Ilit(x) =
Ld(x)R(x)+La(x)R(x). If some object occludes the primary
light source, it will cast a shadow on point x. As this occluder
would also block some of the ambient illumination, thus, the
reflected intensity on point x is Ishadow(x) = η(x)La(x)R(x),
where η(x) is the variant attenuation factor of the ambient
illumination inside the shadowed area due to the occluder.

With above observation, the lit intensity at x can be ex-
pressed as an affine function between the illuminated and
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shadowed intensities [SL08]:

Ilit(x) = Ld(x)R(x)+
1

η(x)
Ishadow(x)

This affine function can be reformulated as:

Ilit
k (p) = αk(p)+ γ(p)Ishadow

k (p) (1)

where αk, k ∈ {R,G,B}, is the reflected direct illumination
in the three RGB color channels, and γ(p) = 1

η(x) is the in-
verse of the ambient attenuation factor.

Based on the affine model (1), the illuminated pixel col-
or may be recovered from its shadowed color by estimating
those four affine parameters αk and γ(p). Using the gener-
al affine relationship between the shadowed and the lit re-
gions, Shor et al. [SL08] estimated four uniform parameter-
s for the affine model, and applied the color transfer tech-
niques [RAGS01] to recover the illuminated intensity for
each pixel in the shadowed regions. However, uniform pa-
rameters for the shadowed regions may not work well. One
reason is that the shadowed regions usually contain surfaces
with different reflectance, especially for images with com-
plex scenes and texture structures. Another reason is that
strong self shadowing effects and strong variations in col-
or also present in some texture images. For example, each
stone in Figure 3 may have different reflectance, self shad-
owing also exists in this image.

Ideally, we should recover illuminated intensity at a shad-
owed pixel from lit regions that come from the same sur-
face (thus with same materials), and then estimate the four
adaptive parameters of the affine model (1). However, the
shadowed regions usually contain different kinds of surfaces
with different materials, thus, for each of these surfaces it
is not feasible to find a corresponding region with the same
material in the lit regions. For example, sometimes there is
no corresponding region in the lit regions. We would like
to present a more general and adaptive illumination transfer
method for shadow removal that respecting to the reflectance
variation.

We present an adaptive illumination transfer approach for
shadow removal. With the selected lit region L, and the de-
tected shadowed regions S, we estimate adaptive parameters
for illumination transfer method. Let µ(S) and µ(L) be the
mean colors of the pixels in S and L, and σ(S) and σ(L)
be the standard deviation of their illuminance. According to
color transfer technique [RAGS01], by setting

γ =
σ(L)
σ(S)

(2)

αk = µk(L)− γµk(S),k ∈ {R,G,B} (3)

and applying these four uniform parameters to each of pixels
in S, the mean and the standard deviation of the resulting set
S′ would match those of L, which makes S′ a shadow-free
image like the lit region L. This is also the basic shadow
removal idea of [SL08].

We observe that in the shadowed regions, the variation
of attenuation factor γ is usually small, thus, we can use u-
niform value γ in shadowed areas in the model (1). As for
α = Ld ·R, the intensity parameter of reflected direct illumi-
nation, is the product of the direct illumination Ld((x) and
the reflectance R(x). As the illumination Ld(x) may be con-
sidered as uniform for the scenes in the image, however, the
R(x) may differ significantly for different materials. Thus,
parameter αk should be estimated accounting for the differ-
ent materials with different reflectances R(x). As shown in
Figure 3, the uniform parameters αk in [SL08] make the re-
sults covered by a layer of veil, since they do not account for
the reflectance variation of the different materials.

Now we come to find an adaptive α for each pixel x in
shadowed region S. let Iavg be shadowed pixel representing
shadowed region S, with intensity µ(S), reflectance Ravg, the
direct and ambient illumination at this pixel is Ld and La,
and γ is the occluding parameter. Let the recovered intensity
of Iavg is µ(L) (mean colors of the pixels in L ). As µ(S) and
µ(L) are the intensity values of Iavg under the shadowed and
lit case, and since in the lit case, there are no occluder, thus
there are no attenuation, so

Iavg = µ(S) = 1
γ
·La ·Ravg

Irecov = µ(L) = (Ld +La) ·Ravg
(4)

With Eq.(1), Eq.(2), Eq.(3) and Eq.(4), the recovered inten-
sity under the reflected direct illumination is:

αavg = µ(L)− γ ·µ(S)
= (Ld +La) ·Ravg−La ·Ravg = Ld ·Ravg

(5)

For each pixel x with intensity I and reflectance R in the
shadowed regions S, under the reflected direct illumination
Ld , its recovered intensity α under the reflected direct illu-
mination is:

α = Ld ·R (6)

As we assume in the shadowed regions, the ambient illumi-
nation La is uniform, so for each pixel x, its intensity I is
generated due to the ambient illumination:

I =
1
γ
·La ·R (7)

With Eq. (4), (5), (6), (7), we come to following results

αavg

α
=

Ld ·Ravg

Ld ·R
=

Ravg

R
(8)

Iavg

I
=

1
γ
·La ·Ravg

1
γ
·La ·R

=
Ravg

R
(9)

With Eq.(8) and Eq.(9), we receive

α = αavg ·
I

Iavg
(10)

So for each pixel x in the shadowed regions S with the in-
tensity value I, and with the αavg = µ(L)− γ · µ(S), Iavg =
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(a) (b) (c) (d) (e)

Figure 3: Shadow removal results comparison.(a) Input image, (b)shadow removal result of [SL08] (This picture is taken from
the manuscript [SL08]), (c) result of [FHLD06], (d) result of [WTBS07], (e) our result.

µ(S), its recovered intensity α under the reflected direct illu-
mination can be estimated. Thus, although we do not know
the reflectance R of pixel x, we can estimate its recovered
intensity α under the reflected direct illumination using the
information from both S and L.

(a) (b) (c)

(d) (e) (f)

Figure 4: Shadow removal in la∗b∗ color space. (a) (b)
(c) are the l,a∗,b∗ channel of the input image (Figure 3(a)),
respectively, (d) (e) (f) are the shadow removal results of (a)
(b) (c), respectively.

We perform proposed shadow removal operation in the
la∗b∗ color space. As pointed out in [RCC98], compared
with RGB color space, each component (L, a∗ and b∗ chan-
nel) of the la∗b∗ color space is more uncorrelated for natu-
ral image. For example, in natural image, L channel varies
widely from areas of bright illumination to those in shad-
ow. As we remove the shadow in each channel dependently,
thus, la∗b∗ color space works better in our natural image

shadow processing. We first transform the RGB color space
into the la∗b∗ color space, and perform shadow removal in
the la∗b∗ color space, and finally transform the shadow re-
moval results back to the RGB color space. The main steps
for the proposed shadow removal approach are as follows:
(1) Detecting the shadowed regions S and selecting a lit re-
gion L;
(2) With S and L, estimating the uniform parameters Iavg =
µk(S), µk(L), σk(S), σk(L), αavg, and γ= σk(L)/σk(S) based
on global illumination transfer, k ∈ {l,a∗,b∗};
(3) Compute the intensity αk under the direct illumination
for each pixel x using Eq.(10), k ∈ {l,a∗,b∗};
(4) Recover the final intensity for pixel x: Ilit

k (p) = αk(p)+
γ(p)Ishadow

k (p), k ∈ {l,a∗,b∗}.

In Figure 4, we give shadow removal in la∗b∗ color space
for each channel of the input image, as illustrated in Figure
4, the shadow is removed in each channel. In Figure 3, using
the proposed method, the shadow is removed much better
than the previous method [SL08, WTBS07, FHLD06]. The
texture structures and detail are better recovered.

5. Multi-scale shadow removal

Although our previous shadow removal method can recov-
er the texture detail well in most cases, for some extremely
complicated cases, where the shadowed regions are too dark
and have heavy noise, or the edges information and texture
detail in the shadowed regions have been weakened serious-
ly due to the illumination occluding, our previous method
may not work well, as illustrated in Figure 5. We present a
multi-scale shadow removal method to address these prob-
lems. We decompose the image in a multi-scale detail level-
s using an edge-preserving filter, and remove the shadow in
each level, then combine the shadow removal results into the
final results in a spatially varying manner using the weighted
average. This approach can receive more faithful results.

Let I be the input image. Using an edge preserving fil-
ter [FAR07, TM98], we compute M progressively coarser

c© 2013 The Author(s)
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version I1, · · · , IM of I, which suppress the noise while pre-
serving the strong features in all subsequent decomposition
iterations. We compute M subsequent image detail levels:
{D j}M

j=1, where D j = I j − I j−1. We then compute σ j(S),
µ j(S) and σ j(L), µ j(L) for the S and L regions on each im-
age detail level D j, respectively, and recover the shadowless
image DSL

j for each D j using the method described in previ-
ous section. Similarly, we also compute a shadowless image
ISL
M for the base image IM . The final shadowless image of

the input image I is defined as sum of ISL
M and the weighted

average of the shadowless image detail levels {DSL
j }M

j=1:

Isl = ISL
M +ω ·

m

∑
j=1

W jD
sl
j /

m

∑
j=1

W j,0 < ω≤ 1 (11)

where the weight W j is defined as:

W j = gσ ∗ ( j · e−
1
n ∑ |∇I j|)

n is the number of the image pixels, the Gaussian convolu-
tion gσ is used to locally smooth the weight. This weighted
average method prefers coarser detail level by giving them
larger weight, because the color and luminance noise are s-
moothed more, and the prominent edges are better preserved
in the coarser images. These properties help to recover the
edge information and suppress the noise in the shadowed re-
gions. In our experiments, we find out that setting M = 3
works well for generating good results.

Using this multi-scale shadow removal technique, both
the prominent edges and color detail in the shadowed re-
gions can be better recovered, and furthermore, the lumi-
nance noise has less influence on the final results. As shown
in Figure 5, the results of multi-scale shadow removal are
better than the results produced using a single level image
technique.

6. Shadow boundaries processing

As the shadow boundaries usually change more rapidly than
interior regions of the shadow, and the uniform direct illu-
mination assumption may not work well to produce faith-
ful results along the boundaries. In addition, for complicated
shadows, to accurately detect the shadow boundaries is al-
so a challenging work. Thus, we have to remove the shad-
ow and illumination inconsistencies around the boundaries
regions. We present a Bayesian shadow estimation approach
to eliminate the shadows around the boundaries, and produce
a consistent luminance transition between the recovered re-
gions and the original lit regions.

According to [WT05,WTBS07], an image I of a scene can
be defined as the following natural shadow equation I = Fβ,
where F is the shadowless image, and β is a multi-channel
shadow matte which is a factor to describe the attenuating
effect of the illumination at each pixel. As we have known
the F and I in the lit regions ( F can be considered to be equal
to I) and interior regions of the shadowed regions, according

to β = I/F , the β in these regions can be computed (in the
shadowed regions is below 1, while in the lit region equals
to 1). Then with known F , I, β in the neighborhood of the
boundaries, and the I value on the boundaries regions, we
can estimate the F , β on the boundaries regions.

Inspired by [CCSS01], we present a Bayesian shadow
edge estimation framework. By constructing oriented Gaus-
sian distributions in the neighborhood containing comput-
ed β and F , we apply a continuously sliding neighborhood
window that marches from known recovered regions and o-
riginal regions inward the interior of the boundaries region-
s. We formulate the problem of estimating β and F in a
Bayesian framework and solve it using the maximum a pos-
teriori (MAP) technique. We find the most likely estimates
for F , β given the existing intensity I:

argmaxF,βP(F,β|I)
= argmaxF,βP(I|F,β)P(F)P(β)
= argmaxF,βL(I|F,β)+L(F)+L(β)

(12)

where L(·) = logP(·). The log likelihoods L(I|F,β) is de-
fined as the difference between the observed color I and
the color that would be predicted by the estimated F and β:
L(I|F,β) = − ‖ I−Fβ ‖2 /σ

2
I , with standard deviation σI .

With similar definition to [CCSS01], L(F) is defined from an
oriented elliptical Gaussian distribution. We also assume that
the log likelihood for the opacity L(β)is constant and is omit-
ted from the maximization procedure. The overall equation
(12) can be efficiently optimized, and with the continuously
sliding strategy, we can efficiently receive the final results
for F and β. Compared with Bayesian shadow extraction ap-
proach [WT05], our method is more simplified and efficient,
however, we found that the proposed method works well for
our aim.

As shown in Figure 6, our method efficiently removes the
shadows around the boundaries, and produces continuous il-
lumination transition between the recovered regions and the
original lit regions. Note that many image matting methods
have been proposed, see [WC07] and more recent methods,
some of these matting ideas can be applied to further im-
prove the shadow boundaries processing.

7. Extension to Video

Our algorithm can be efficiently extended to video shadow
removal. To perform video shadow detection, one method
is to firstly detect the shadow regions in the selected key
frames, then use the optical flow to track the spatiotemporal
shadowed regions. However, as the video shadow is usual-
ly complex, automatically propagating shadow regions from
one frame to others is difficult and unreliable, and the ap-
proach may not work well for video with sparkled shadowed
regions and soft regions. As an alternative method, we con-
sider the input video as the spatiotemporal video volume. By
applying the user interface presented in [WBC∗05] to paint
spatiotemporal scribbles on the definitely shadowed regions

c© 2013 The Author(s)
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(a) (b) (c) (d)

Figure 5: Multi-scale shadow removal. (a) Input images, (b) shadow removal results of [SL08], (c) results of our single level
shadow removal, (d) results of our multi-scale shadow removal.

(a) (b) (c) (d)

Figure 6: Boundary processing. (a) Input image, (b) our result without using shadow boundary processing, (c) our result using
shadow boundary processing, (d) shadow removal result of [SL08].

and lit regions in the video volume, the GMM brush used in
image case can be easily extended to video volume to select
the shadowed spatiotemporal regions Sv.

For video shadow removal, it is important to keep the
shadow removed video temporally consistent, if we remove
shadow frame by frame, and only using the information of
the current frame, the resulted video may have such artifacts
as flickering. To address this issue, we estimate the uniform
parameters Iavg = µk(S), σk(S), for each frame i in Sv using
the color information of the neighboring frames of frame i,

in our experiments, we use four neighboring frames. In a
similar way, the µk(L) and σk(L) of frame i are also com-
puted using the information of neighboring frames in lit spa-
tiotemporal regions Lv. Then the intensity α

i,x
k for each pixel

x of the frame i is computed using the weighted average of
the intensity αk of the spatio-temporal neighboring pixels
α

i,x
k = ∑y∈N(x) ωyα

y
k, and ωy = e−|y−x|2/2σ

2
. Finally we re-

cover the intensity for pixel x in the same way as image case.
For video shadow boundaries processing, all the probabili-
ty distribution P, log likelihood L(I|F,β) and L(F) can be

c© 2013 The Author(s)
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defined in spatio-temporal regions. We apply the Bayesian
shadow estimation in the spatio-temporal regions for each
pixel in the boundary regions, and remove the shadow arti-
facts in the boundary regions.

In Figure 7, we present video shadow removal result. The
size for the videos is 538× 303× 50. As shown in the sup-
plemental videos, we receive shadow free and temporal con-
sistent results. As the shadow region in the video is relative
small, in our experiment, for each frame, we spend less than
one second to remove shadow. Note that in this video, the
shadow regions do not show rapid motion, thus, we need not
to take motion compensation into condition. In the future,
we will work on video shadow removal with more complex
shadow regions.

8. Results and discussion

In this section, we show the efficiency of the proposed
method by processing a variety of images. We also present
comparison results on both shadow removal performance
and quality with some of the most related methods. Limi-
tations of the proposed method are also presented. All the
results are implemented using C++ on a machine equipped
with Pentium(R) Dual-Core CPU E5200@2.50GHz with
2GB RAM.

In Figure 5, we compare the results using and without
using multi-scale shadow removal technique. In our exper-
iments, we find that in most cases, our single scale shadow
removal method can receive satisfactory results. When the
shadowed regions are too dark (heavily shadowed) or con-
tain very fine texture structures, we have to resort to the
multi-scale strategy to receive better results. As shown in
Figure 5, for these images with complicated texture detail,
the results of our single scale shadow removal method are
better than [SL08], while with the multi-scale strategy, the
fine texture detail recovering are further improved. The noise
in the recovered regions is also efficiently suppressed. Using
the accelerated multi-scale image decomposition [FAR07],
multi-scale strategy can be performed efficiently.

In Figure 6, we give the comparison results on the shad-
ow boundaries processing. As shadow boundaries usually
change rapidly and nonlinearly, thus, direct interpolation be-
tween the original and the recovered regions cannot produce
faithful and visually natural results. Inpainting based border
processing techniques [SL08] can produce visually pleasing
results for images with abundant self-similar texture infor-
mation, while this method cannot receive faithful shadow-
free boundaries since inpainting techniques modify the im-
age boundaries content. Especially for shadow boundaries
with sharp structures, the artifacts are more noticeable, as
shown in Figure 6. Our method efficiently removes the shad-
ow around the boundaries while not modifying the content
of the image.

In Figure 3 and Figure 8, we compare with several most

related methods [FHLD06, WTBS07, SL08, GDH11]. Fin-
layson and colleagues [FHLD06] treated shadow removal as
a reintegration problem based on precise shadow edge de-
tection. As shown in Figure 3 and Figure 8, the unpleasing
results happen on the boundaries. Furthermore, the fine tex-
ture detail is also not recovered well. As Shor et al. [SL08]
applied uniform affine parameters in illumination transfer to
remove the shadows, even they applied the pyramid-based
restoration for further enhancing texture contrast and and
reducing noise, sometimes the fine texture detail still can-
not be efficiently recovered. For example, for some complex
scenes such as the stone texture image in Figure 3, as each
stone may have different reflectance, uniform reflectance pa-
rameter setting may make the results covered by a layer of
by a layer of veil. To process shadowed scenes with weak
texture and structures, the approach [WTBS07] can receive
pleasing results, as shown in Figure 8(e). To process com-
plex scenes, this method [WTBS07] still cannot receive sat-
isfactory resultsčňas illustrated in Figure 3 (d) and Figure 8
(a)(b)(c)(d). Guo et al. [GDH11] relighted the whole image
based on the shadow coefficient value estimated using mat-
ting technique [LLW08]. This method works well for seam-
less transition between the recovered regions and the original
lit regions, but still cannot recover the texture detail efficient-
ly in the interior regions, as illustrated in Figure 8.

In Figure 3 and Figure 8, to make a fair comparison, all
the methods work on the same shadowed regions with the
same boundaries. When the shadowed image has several
parts with different reflectance, as shown in some images in
Figure 8 (b), one plausible way to receive satisfactory results
is to find a corresponding lit region for each different part in
the shadowed regions, and then estimate the parameters, re-
spectively. While this method is tedious for complex scene,
in addition, it may not produce continuous results between
adjacent parts. In our method, in all the examples, we use on-
ly a single lit region for the shadow removal parameters es-
timation. Also note that in Figure 3 and Figure 8, our results
is derived using a single level shadow removal method, not
using multi-scale strategy. In shadow detection, we perform
the GMM brush on the coarse image with level M = 3. In
Figure 8, we also present ground truth shadow-free images
for some of the shadowed image. The shadow-free images
come from the manuscript [GDH11]. Note that for compari-
son with [GDH11], we use the shadow removal results from
the manuscript [GDH11].

Figure 9 shows the shadow removal result of a fresco from
Mogao Caves of Dunhuang. The frescos of Mogao Caves are
precious materials for researching on the Chinese art history.
In this Figure, we successfully remove the shadow of the
fresco and the image details are also well recovered.

The time consumption of the proposed method is consist-
ed of three stages: shadow detection, shadow removal, and
boundaries processing. Using our method, for an image with
size of 800×600, it usually takes 0.4 to 0.6 seconds for shad-
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(a) (b) (c) (d) (e)

Figure 7: Video shadow removal results. Top row, the five frames of the input video; bottom row, the corresponding shadow
removal results.

ow detection, 0.3 to 0.5 seconds in shadow removal stage for
one single scale, and 1 to 2 seconds for boundaries process-
ing. Given an input image, it should be noted that the com-
putational time also depends on the size and the shape of the
shadowed regions needed to be processed.

To remove the shadow regions for an image with size
of 800 × 600, it takes about 60s to 80s, 1s to 2s, 90s
to 120s, 60s to 70s and 0.3s to 0.5s for [WTBS07], [S-
L08], [FHLD06], [GDH11], and our method, respectively.
As method [FHLD06] has to process a reintegration method,
which may be little time-consuming. Minimizing an energy
minimization [WTBS07] also has relative high computation-
al complexity. For method [GDH11], to estimate a fraction-
al shadow coefficient value using closed-from matting [LL-
W08] is time and memory consuming for solving a linear
system. Our method and [SL08] are much faster by esti-
mating shadow removal parameters. In most cases, Shor et
al. [SL08] have to apply the pyramid-based restoration to
recover the image detail, which makes it a little more time-
consuming than our method. While our method can produce
satisfactory results using one single scale in most cases, and
without resorting to multi-scale techniques.

(a) (b)

Figure 9: (a) Input image with shadow, (b) the shadow re-
moval result using the proposed method.

Limitations: Although our method can produce impres-
sive results, for some complex images, to derive satisfactory
results, the selection of the lit regions is important for our

method. As shown in Figure 10, the texture materials of the
wood block are complex, and the illumination conditions are
also complex, there are umbra, penumbra and other complex
soft shadows presented in the images. Our method is based
on the illumination transfer technique, which transfers the
illumination information of the lit regions to the shadowed
regions to perform shadow removal. Thus, in these complex
cases, to receive satisfactory results, we have to select appro-
priate lit regions as samples, and there must be a coherent lit
region in the image that shows all materials existed in the
shadow region. As illustrated in Figure 10, appropriate lit
regions produce much better result.

Figure 10: Limitation. Left column, the selected different
lit regions on the input image. Right column, corresponding
shadow removal results.

9. Conclusion and future work

We present a fast image removal approach from a single
image using an adaptive multi-scale illumination transfer
method. By estimating different reflectance for differen-
t scene materials from the the lit regions, we can obtain a
high-quality shadow-free image. Our method is simple but
effective, and is easy for implementing. We demonstrate that
our approach can produce results that are in most cases supe-
rior in quality to those of previous shadow removal methods.

c© 2013 The Author(s)
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(a) (b) (c) (d) (e)

Figure 8: Shadow removal results comparison: The first row: input shadowed images; The second row: detected shadow; the
third row: our results; the fourth row: the results of [SL08]; the fifth row: the results of [GDH11]; the sixth row: the results
of [FHLD06]; the seventh row: results of [WTBS07]; the eighth row: ground truth shadow-free images. Please zoom in the
images for displaying the difference. Note that for both the results of [GDH11] and ground truth results, we take the pictures
directly from the manuscript [GDH11].

In the future, we will work on image shadow removal un-
der several different light sources, which is more challenging
while can make the proposed method more general and ap-
plicable. As shadow removal and modification help to pro-

duce more visually pleasing results in image editing propa-
gation, material editing, recoloring, in the future, we would
like to take the shadow processing involved for more pleas-
ing image editing results.
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