
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING XX, 1-xxx (xxxx)

1

Time-Critical Rendering of Tetrahedral Meshes

CHUAN-KAI YANG AND TZI-CKER CHIUEH*
Department of Information Management

National Taiwan University of Science and Technology
Taipei, 106 Taiwan

*Department of Computer Science
Stony Brook University

Stony Brook, NY 11770, USA

Very large irregular-grid volume datasets are typically represented as tetrahedral
meshes and require substantial disk I/O and rendering computation. One effective way to
reduce this demanding resource requirement is compression. Previous research showed
how rendering and decompression of a losslessly compressed irregular-grid dataset can
be integrated into a one-pass computation. This work advances the state of the art one
step further by showing that a losslessly compressed irregular volume dataset can be
simplified while it is being decompressed and that simplification, decompression, and
rendering can again be integrated into a pipeline that requires only a single pass through
the datasets. In particular, this rendering pipeline can exploit a multi-resolution
representation to maintain interactivity on a given hardware/software platform by
automatically adjusting the amount of rendering computation that could be afforded, or
performing so called time-critical rendering. As a proof of the feasibility of our proposed
framework, we modify an existing tetrahedral mesh simplification algorithm and
integrate it with our previous volume decompression and rendering pipeline.
Performance measurements on this prototype system show that simplification only adds
less than 5% of performance overhead on an average; furthermore, with multi-resolution
pre-simplification the end-to-end rendering delay indeed decreases in an approximately
linear fashion with respect to the simplification ratio, thus a time-critical rendering of
large tetrahedral mesh could be achieved.

Keywords: Irregular Grids, Tetrahedral Mesh Compression,
Volume Simplification, Volume Rendering, Time-Critical Rendering

1. INTRODUCTION

Our previous paper [1] showed that it is possible to pipeline the decompression of a
losslessly compressed tetrahedral mesh and the rendering of the resulting tetrahedra, thus
significantly reducing the memory footprint requirements of rendering tasks whose target
datasets are close to or larger than the rendering machine’s physical memory. This
performance advantage comes from the fact that volume decompression and volume
rendering are integrated into a one-pass computation.

To further reduce the rendering delay associated with very large irregular volume
datasets, one needs to trade accuracy for performance. Given a rendering hardware and a
pre-defined level of interactivity, the goal is to develop a rendering algorithm that can

CHUAN-KAI YANG AND TZI-CKER CHIUEH2

meet the performance requirements while maintaining the highest rendering image quality.
The enabling technology that allows making such a tradeoff is tetrahedral mesh
simplification. Unfortunately, most existing mesh simplification algorithms are
implemented as a stand-alone tool rather than as a tightly integrated component of an
irregulargrid volume renderer, thus limiting their utility as a dynamic performance
adaptation mechanism.

The main contribution of this paper is twofold. First, it is not on the invention of any
new simplification algorithm for irregular volume data, but rather on proposing a
framework that could integrate any simplification algorithm into the system pipeline
should it satisfy certain assumptions (described more thoroughly in Section 3), which
happen to be assumed by most existing algorithms. We demonstrate how an existing
mesh simplification algorithm could be readily modified to fit nicely into a
decompression-driven volume renderer, thus making it possible to integrate volume
decompression, simplification, and rendering into a seamless pipeline that requires only
one pass through the compressed input dataset. Because of this streamlined structure, the
volume renderer can dynamically adjust the rendering accuracy to match the
user-specified interactivity requirement and/or computation resource availability. Second
and more importantly, simplification and lossless compression together make it possible
to represent a tetrahedral mesh as a multi-resolution pre-simplification hierarchy, with the
losslessly compressed version corresponding to the finest resolution. As a result, the
proposed integrated decompression / simplification / rendering engine, not only greatly
reduces the runtime disk access overhead and peak memory usage during the rendering
stage, as in the previous integrated volume decompresser/renderer[1], but also enables the
time-critical rendering of very large tetrahedral meshes

We have successfully implemented the integrated decompression / simplification /
rendering pipeline in our system, called Gatun, as it is also a name of locks for the
Panama Canal, whose operation inherently follows a pipeline structure. Our performance
measurements on the Gatun prototype show that the proposed mesh simplification
algorithm only adds less than 5% overhead on an average compared to an integrated
volume decompresser/renderer, thus demonstrating the efficiency of the proposal’s
implementation simplicity. On the other hand, the proposed mesh simplification, together
with our pre-simplification multiresolution scheme, can effectively reduce the total
rendering time by a factor of up to 2 when 90% of the input mesh is simplified away.

The rest of this paper is organized as follows. Due to the limit of space, we only
review related work on tetrahedral mesh simplification in Section 2. In Section 3, we
describe the on-the- fly mesh simplification algorithm that is tightly integrated with the
mesh decompresser and renderer. In Section 4, we demonstrate how to apply the
simplification-capable integrated renderer to time-critical rendering. Section 5 reports the
performance measurements of the proposed integrated mesh decompression /
simplification / rendering pipeline on the Gatun prototype for six irregular-grid datasets
with the number of tetrahedra ranging from 1.3K to 1.2M. Section 6 concludes this paper
by summarizing the main research contribution of this work.

TIME-CRITICAL RENDERING OF TETRAHEDRAL MESHES 3

2. RELATED WORK

There are a few works on polygonal surface mesh simplification. These methods
simplify a 3D surface model by merging neighboring polygons into one if they are “flat”
enough [2–4], by re-tiling the triangular mesh through inserting vertices at places with
maximal curvature and iteratively remove the old vertices [5], by clustering vertices to
obtain a possibly topologically different mesh [6], by performing a wavelet-based
multi-resolution analysis of the input mesh and re-meshing/re-sampling the mesh if
necessary [7], by optimizing the input mesh through addition and/or removal of vertices
or collapsing/swapping edges to minimize a certain pre-defined energy function that
depends on the mesh [8], and by simply collapsing edges to form progressive meshes [9].
The last algorithm, in particular, provides a general framework for building
view-independent multiresolution representation of a 3D surface. It uses an error metric
that is defined for each simplification primitive (vertex, triangle, tetrahedron, etc.). At run
time, the algorithm first computes the error metric for each simplification primitive that is
applicable to the input triangular mesh, and then builds a priority queue for these
primitives according to their error metrics. The simplification process starts with the
primitive with the smallest error metric, collapses edges or patches the resulting mesh,
re-computes the error metric for all the simplification primitives that are affected, and
finds the next primitive with the smallest error metric, etc.

There is another line of research [10–12] in this area that focuses on view-dependent
simplification, which is able to adapt the extent of simplification for each geometric
primitive to view angles and other run-time parameters, and some can also provide error
control mechanism. In general this class of algorithms first statically build a hierarchical
data structure for the input 3D model and at run time use the viewing angle information to
compute simplification parameters and efficiently locate the necessary part of the
hierarchical data structure that is to be used for rendering. Some research extended this
line of work to support the out-of-core view-dependent simplification as well [13].

Volume simplification, on the other hand, attracts relatively less research effort.
Cignoni et al. [14] proposed decimating vertices iteratively and the resultant holes are
retetrahedralized locally. Later they proposed another method which estimates the quality
of simplification by utilizing two types of error, domain error and field error, with the
first one referring to the deviation from the the original geometry while the second one
the difference with the scalar fields defined over the original mesh [15]. Renze et al. [16]
generalized the idea of progressive meshes to perform volume decimation for
unstructured grids. Staadt et al. [17] proposed techniques for progressive
tetrahedralization which can avoid some artifacts such as self-intersections due to an
improper simplification. Trotts et al. [18] applied a piece-wise linear spline function that
is defined over the scalar values over the input tetrahedral mesh as the basis of the error
metric for volume simplification. The algorithm associates each tetrahedron with such an
error metric and favors the removal of those tetrahedra that causes the least change in the
spline function. Removing a tetrahedron is carried out by a sequence of edge collapses.
The TetFusion approach, proposed by Chopra et al. [19], performs the simplification by
shrinking a central tetrahedron towards its geometric center, and one such central
tetrahedron’s collapse will cause the degeneration of at least eleven tetrahedra. The
reduction rate is fast, however, the dealing with boundary tetrahedra is tedious and thus is

CHUAN-KAI YANG AND TZI-CKER CHIUEH4

avoided, leading to low compression ratio. Furthermore, the error estimation scheme is
not yet established. Co et al. [20] proposed a method that treats unstructured grids as
point cloud and represents such grids by hierarchical clustering. The hierarchy is
generated by applying the PCA (principle component analysis) for cluster generation and
a simplified RBF (radial basis functions) for fitting the scalar fields. At the run time, the
traversal of the cluster hierarchy could be level-based, or error-based. Gelder et al. [21]
proposed a less computation-intensive approach for simplification, which aims to
minimize the density or “mass” change due to an edge collapse. Boundary vertices come
with extra geometry-related error metric, in addition to the so called “data-based” error
metric required of internal vertices. The on-the-fly simplification scheme presented in this
paper is based on this work.

In terms of integrated work, besides Gatun, volume compression and rendering have
also been integrated in the work by Schneider et al. [22]. Through the use of vector
quantization, their work has the elegance of trading fidelity for performance in a more
unified framework. However, their work is designed only for dealing with regular grids
and cannot be readily applied to unstructured grids. Probably the work from Farias et al.
[23] is by far the most similar one to us. However, in their work, they applied basically
the vertex clustering idea from [6] where the topology of a mesh may be changed. Gatun
applies a simplification approach which can not only preserve the topology of a mesh but
also makes it easier to be pipelined with the decompression process. In addition, Gatun
uses an object space-based ray casting approach. Because of ray casting, the resulting
rendered image quality is high. Also because of the object space architecture, rendering
can be done incrementally and thus can be nicely tied with the mesh decompression
process.

3. ON-THE-FLY TETRAHEDRAL MESH SIMPLIFICATION

To incorporate mesh simplification in the integrated rendering/decompression
pipeline described [1], Gatun first statically computes a priority list of volume
simplification operations, and at run time performs a selective subset of these vertex
merge (in this paper, the term vertex merge is interchangeable with edge collapsing)
operations based on user requirements and/or available computation resources. The
simplification step is inserted between decompression and rendering in a way that is
largely independent of the internal working of the renderer and decompresser.

3.1 Static Simplification Algorithm
Gatun makes the following assumptions on the volume simplification algorithm:

–Vertex merge is the only tetrahedral mesh simplification primitive used in the algorithm,
and each vertex merge operation is denoted as Vi Vj , which means that Vi is merged
into Vj , and
–The algorithm can statically compute an error metric for all possible vertex merge
operations, and derive a priority order among them based on this error metric.

The volume decimation algorithm [21] described in this subsection is one example
of such volume simplification algorithm. Gatun can inter-operate with any other
simplification algorithms as long as they satisfy the above assumptions. We

TIME-CRITICAL RENDERING OF TETRAHEDRAL MESHES 5

re-implement [21]’s algorithm for our testing volume simplification algorithm.
This volume decimation algorithm takes into account two types of errors introduced

by simplification: density-related (Errordensity) and geometry-related (Errorgeometry), and
the final error metric associated with a vertex merge operation is

Wdensity Errordensity +Wgeometry Errorgeometry (5)
where Wdensity and Wgeometry are weighting parameters that are tailored to the needs of
individual application.

After computing the error metric for all neighboring vertex pairs, the volume
decimation algorithm selects the vertex merge operation with the smallest error metric,
say Vn Vm, eliminate all vertex merge operations of the form Vn Vk for some k from
further consideration, re-computes the error metric of those vertex merge operations that
are affected by the application of Vn Vm, and repeats the cycle by picking the one with
the smallest error metric from the remaining vertex merge operations, etc. After a vertex
merge operation, the geometry of the affected region of tetrahedral mesh is changed.
Consequently, the error metric of those vertex merge operations associated with the
affected region needs to be recomputed. More specifically, after the application of a
vertex merge operation Vi Vj , the error metric of all vertex merge operations of the
form Vk Vi needs to be recomputed based on the new geometry. Eventually the
algorithm ends when all vertex merge operations have been eliminated. The list of
selected vertex merge operations are ranked in an ascending order according to their error
metric value, the smaller the error metric value is, the earlier a merge operation is
performed. The rank value associated with a merge operation represents the order this
operation is performed. For example, a operation with rank value 3 means it is the third
operation.

Fig. 1 An example merge tree that shows all the vertex merge operations, as represented as edges,
that are being considered, and their relative priorities, as indicated by the weights on the edges.

A vertex that never needs to be merged into any other vertex is called an
independent vertex. After applying the above volume decimation algorithm to a
tetrahedral mesh, every vertex is scheduled to be merged into some other vertex at a
certain priority except one or multiple independent vertices. Gatun organizes the list of
resulting vertex merge operations into a forest of multiple trees (called a merge tree),
each of whose root is an independent vertex. In these trees, each child vertex is to be
merged to its parent vertex. In addition, every child vertex has a global rank that
represents the priority of the corresponding vertex merge operation. Figure 1 shows an

CHUAN-KAI YANG AND TZI-CKER CHIUEH6

example merge tree for a hypothetic tetrahedral mesh. Each node in the tree represents a
vertex in the mesh, and each edge represents a vertex merge operation. The weight on an
edge represents the global rank of the edge’s associated vertex operation. For example,
the operation of merging Vertex 1 into Vertex 6 has a rank of 10, or equivalently, this is
the 10th operation. At run time, if users ask the system to perform a simplification step
that includes only the first 5 vertex merge operations, this operation will be ignored.

3.2 Run-Time Simplification Algorithm
Because the volume decimation algorithm already computes a global rank for all

selected vertex merge operations, at run time Gatun only needs to perform the first N of
these operations, where N is determined either by users or by the system based on
available computation resource. Therefore whether a vertex merge operation needs to be
performed for a given N is a local decision. This localness property makes it possible to
perform on-the-fly simplification on the resulting tetrahedra stream that the decompresser
produces. The only question left is how to effect each eligible vertex merge operation as a
compressed tetrahedral mesh is being decompressed. The key insight behind inserting an
on-the-fly volume simplification step between decompression and rendering is that all the
renderer wants is that all the tetrahedra it uses during the rendering computation are valid
tetrahedra that exist in the final mesh after all the selected simplification operations have
been applied to the original mesh. That is, as long as every tetrahedron the simplification
step passes to the renderer is a valid tetrahedron in the final mesh the rendering result of
this integrated decompression/simplification/rendering pipeline is guaranteed to be
correct.

Whenever a tetrahedron is decompressed, the renderer in the integrated
decompression/rendering engine described in [1] advances each cast ray that intersects
with the tetrahedron as much as possible, and then stops to wait for more tetrahedra to
come so that these rays can move further ahead. As far as the renderer is concerned, it
does not care about where and how the tetrahedra are generated. Without simplification,
the decompresser outputs all the tetrahedra in the input mesh; with simplification, the
simplification module outputs only those tetrahedra that exist in the simplified mesh.
Therefore, whenever a tetrahedron from the decompresser arrives, the simplification
module needs to check whether the tetrahedron is collapsed after simplification and, if it
is not, whether the tetrahedron’s vertices change because of vertex merging. Only when a
tetrahedron is not going to be collapsed, and the ultimate target vertices of the tetrahedron
after application of all vertex merge operations already appear in the decompresser’s
output stream can the simplification module forward this tetrahedron to the renderer.
Because such tetrahedra are valid in the simplified mesh and their data density and
coordinate are known, the renderer can safely perform rendering computation based on
them and produce provably correct simplified results.

Because what is needed is the set of tetrahedra in the final simplified mesh, one
needs an efficient algorithm to summarize the accumulative effect of a set of chosen
vertex merge operations. More concretely, one needs to compute the ultimate target
vertex into which each vertex is to be merged, based on the input mesh’s merge tree data
structure and a selective set of verge merge operations. With this per-vertex information,
one can easily check whether a given tetrahedron from the decompresser is valid in the
final mesh or not, or if the decompresser has traversed all its ultimate target vertices.

TIME-CRITICAL RENDERING OF TETRAHEDRAL MESHES 7

The on-the-fly simplification algorithm of Gatun therefore consists of two steps: one
before and one during the decompression/rendering process. First, given a threshold N,
the on-the-fly simplification algorithm performs a top-down traversal of the input mesh’s
merge tree and determine which vertex merge operations are eligible by comparing the
vertices’ rank with N. For each eligible vertex merge operation, which corresponds to an
edge in the merge tree whose child vertex’s rank is smaller than or equal to N, the child
vertex’s ancestor field is filled with its parent vertex’s ancestor field. For each
non-eligible vertex merge operation, which corresponds to an edge in the merge tree
whose child vertex’s rank is larger than N, the child vertex’s ancestor field is filled with
its own ID(rank). A root vertex’s ancestor field is alwaysfilled with its own ID. After this
traversal, the ultimate target of each vertex is going to be merged into is kept in the
vertex’s ancestor field. If the ancestor field points to itself, the vertex does not get merged
into anyone, and is present in the final mesh. For example, if the simplification threshold
N is set to 8 for the merge tree in Figure 1, then after simplification, or equivalently after
the first 8 vertex merge operations are done, Vertex 14’s ancestor is Vertex 8, Vertex 9’s
ancestor is Vertex 3, etc., and Vertex 1, 2, 7, 3, 8, 12, and 15 are present in the final
simplified mesh, as shown in Figure 2.

Fig. 2 The resulting mesh after the first 8 merges are carried out.

After decompression/rendering starts, whenever the decompresser passes a
tetrahedron, Gatun first checks whether the ancestors of the tetrahedron’s four vertices
are distinct. If they are not distinct, i.e., multiple vertices of the tetrahedron collapsed into
one, the tetrahedron is not a valid one after all vertex merge operations and thus should
be discarded. If they are distinct, it is a valid tetrahedron. However, a valid tetrahedron
may not be usable yet because not all its vertices’ ancestors have already appeared in the
vertex stream that the decompresser outputs at that point. A tetrahedron can be forwarded
to the rendered if and only if it is both valid and usable. When a non-usable tetrahedron
first appears, it is attached to all the ancestor vertices that it waits for (the vertex table
data structure), and its wait_count field is initialized to the number of ancestors that have
yet to appear (in the tetrahedron table data structure). Every time the decompresser
enumerates a new vertex, it checks whether there are any tetrahedra waiting for the new
vertex, if so it decrements the wait_count field of each such non-usable tetrahedron by
one, and forwards to the renderer those tetrahedra whose wait-count field reaches zero.

The on-the-fly volume renderer described in [1] needs to identify the input
tetrahedral mesh’s boundary surface first so that it can compute the intersections between
the cast rays and boundary faces. However, the boundary surface may also be affected by

CHUAN-KAI YANG AND TZI-CKER CHIUEH8

the simplification step. For the boundary surface of an input tetrahedral mesh, Gatun
performs a similar usability check on each boundary face, based on whether the ancestors
of each face’s three vertices are distinct. Only after all valid boundary faces have been
completely identified can the renderer-cast rays be properly attached to the boundary
surface. Only after successful attachment of all cast rays can the renderer advance the
rays into the simplified tetrahedral mesh to interpolate/composite the data density values
at sampling points.

The time complexity for the run-time simplification alone is linear, in terms of the
number of vertices in a dataset, and the reasons are the following. First, the top-down
traversal of the merge tree needs to be done only once. Second, the checking for waiting
tetrahedra and boundary faces is also with linear time complexity, as each tetrahedron
contains four vertices and each face three vertices.

4. TIME-CRITICAL RENDERING

The original motivation for incorporating volume simplification into an integrated
pipeline is to apply it at run time to trade quality for performance, or more specifically to
time-critical rendering, where the goal is to maximize the rendering quality for a fixed
timing budget by simplifying the input mesh appropriately. Although the integrated
decompression/simplification/rendering pipeline described in the last section makes a
good starting point, it itself is not sufficient to support time-critical rendering, because the
decompression overhead dominates the end-to-end user-perceived delay regardless of
the extent of mesh simplification and thus the reduction in rendering time. In other words,
while simplification does decrease the rendering time, it does not affect the end-to-end
delay that much because the system still needs to decompress the entire input dataset and
simplify it to a chosen level. To address this issue, we pre-compute multiple simplified
versions of each input dataset, each corresponding to a particular simplification ratio,
which is defined as the number of vertices that are simplified away divided by the number
of all vertices. As shown in Figure 3, an input tetrahedral mesh is pre-simplified at the
simplification ratios of 1−1/2i, and all these simplified versions are independently
compressed and stored to the disk. The maximal value of i depends on the available
system resource and performance requirements.

Fig. 3 Given a target simplification ratio, choose the most simplified version of a multi-resolution
input mesh that is finer than the target as the starting mesh for simplification.

At run time, given a rendering time budget, the system first maps it to the
corresponding simplification ratio, which may be different for different datasets, and then
applies simplification to the pre-computed version of the input data whose simplification

TIME-CRITICAL RENDERING OF TETRAHEDRAL MESHES 9

ratio is the largest among those whose simplification ratio is smaller than the target
simplification ratio. For example, in this Figure, the version with the simplification ratio
of 0.5 is selected as the starting mesh for simplification if the target simplification ratio is
p, whereas the version with the simplification ratio of 0.75 is selected if the target
simplification ratio is q. The basic idea of this approach is similar to mip-mapping[25],
which could be used to speed up texture mapping. Note that although the disk storage
cost of this scheme is doubled, the run-time performance is improved significantly as
shown in the next section, because both decompression and rendering overheads are now
about inversely proportional to the simplification ratio.

5 PERFORMANCE EVALUATIONS

The input datasets used for the performance evaluation of Gatun are listed in Table 1,
as ordered by the number of tetrahedra. While the first two datasets are unstructured grids,
the remaining four are curvilinear grids converted into tetrahedral grids.

Table 1 Characteristics of input datasets used in this performance study.

The compression efficiency (2.5 bits/tetrahedron, connectivity only) remains the
same as reported previously, because we use the same tetrahedral compression algorithm.
In addition, the peak memory usage saving (50% to 70%) also carries over when
simplification is integrated into the pipeline, because the additional memory space
requirement introduced by simplification is minimal, especially when compared with the
rendering stage, whose memory footprint requirement is always dominant. The overall
reduction of memory footprint in Gatun not only speeds up the rendering process by one
to two orders of magnitude when input datasets are too large to fit into physical memory,
but also shortens the perceived rendering delay when input datasets are completely
memory-resident.

5.1 Simplification Overhead
Run-time simplification consists of two steps: a top-down traversal of the merge tree

to adjust each vertex’s ancestor field, and the enqueuing and checking for pending
tetrahedral or faces that are waiting for their vertices to be decompressed. Table 2 shows
the performance overheads for these two steps as measured from the Gatun prototype.
The rendered image plane is set to 256×256. For each input dataset, we also varied the
simplification ratio from 0.1 to 1.0. The hardware testbed used to collect performance
measurements is a P4 1.5GHz machine with 512 MBytes of memory running RedHat
Linux 7.1 . Table 2 shows the simplification overhead in terms of the percentage of the

CHUAN-KAI YANG AND TZI-CKER CHIUEH10

total time. Notice the simplification overhead drops as simplification ratio goes up, which
is because more tetrahedra become degenerate and get discarded therefore the associated
enqueuing and checking (for pending tetrahedra) overheads are also reduced. In all cases,
the run-time simplification overhead is less than 5% on an average for all six test datasets.
This result demonstrates that simplification is a low-overhead runtime performance
adaptation mechanism for irregular-grid volume rendering.

Table 2 The run-time simplification overhead expressed as the relative percentage of the
total rendering time for different simplification ratios.

5.2 Rendering Performance Improvement
A major performance advantage of the proposed integrated pipeline is that each

piece of volume data is brought into the main memory exactly once. In contrast, a
baseline (Generic) implementation of the same three steps may involve reading the input
tetrahedral mesh from the disk, simplifying it, and rendering the simplified mesh. The
whole decompressed data is generated first before any simplification step can be applied.
Similarly simplification must be completed before rendering can start. Figure 5 shows the
end-to-end rendering time comparison between the baseline implementation and Gatun
for each of the six test datasets. For both implementations, as the simplification ratio
increases, the rendering delay decreases as expected. The rendering performance
improvement due to simplification is only up to a factor of two (the Delta Wing dataset
and simplification ratio 0.99). The performance improvement is not linear with respect to
the simplification ratio because when the overhead of “touching” the input dataset once in
order to simplify it dominates the overall performance cost. This result clearly
demonstrates why simplification alone does not provide sufficient flexibility for run-time
adaptation.

Between Gatun and the baseline implementation, Gatun always wins because
Gatun’s pipelined structure significantly reduces the amount of disk I/O due to “store and
compute,” especially for very large input datasets. Although there is plenty of main
memory in the test machine, this performance difference is still quite noticeable. When
memory resource becomes less abundant, Gatun is expected to be far even better than the
baseline implementation in the end-to-end rendering time, as shown in the previous
work[1].

5.3 Time-Critical Rendering
Figure 5 shows that without pre-computing multiple simplified versions, even at the

simplification ratio of 99%, the end-to-end rendering performance is still far from being
interactive for most datasets. To show how multi-resolution pre-simplification helps
time-critical rendering, we first presimplified the Blunt-fin dataset into 13 different
versions at simplificationratios 1 − 1/2i where i ranges from 1 to 13. As shown in Table 3,
at the image resolution of 128 × 128, the end-to-end delay drops to below 0.17 seconds

TIME-CRITICAL RENDERING OF TETRAHEDRAL MESHES 11

(or 6 frames/sec), when the simplification ratio is greater than 0.984. Figure 6 shows that
with pre-computation, the rendering time now indeed becomes approximately linear with
respect to the target simplification ratio. It also suggests that the proposed
multi-resolution pre-computation scheme can also benefit the baseline case as well, as
their performances are rather close to each other (shown in Figure 5).

Fig. 5 Comparisons between the generic renderer (the baseline) and Gatun for different
simplification ratios. There is only one version of the input dataset stored on the disk. Image
resolution is set at 256 × 256.

CHUAN-KAI YANG AND TZI-CKER CHIUEH12

The fact that this performance vs. simplification ratio figure is highly linear also
means that it could serve as the basis for dataset-specific adaptation for time critical
rendering. That is, given a desired frame rate, the system could first perform the
multi-resolution pre-computation, plot the corresponding figure as in Figure 6, then it
could automatically determine the most appropriate simplification ratio from such a
figure, retrieve the appropriate pre-computed version, and initiate the simplification
process from there. For example, for the Blun-fin dataset, if the target frame rate is two
frames per second, or equivalently 0.5 seconds per frame, one can determine from Figure
6 that a simplification ratio of 0.905 could support such an interactivity requirement. In
short, by applying multi-resolution pre-computation, a much more simplified mesh does
not need to suffer from the huge latency introduced by decompressing the whole mesh,
especially when most of the decompressed data would eventually be simplified away
anyhow, thus making most of the waiting in vain. Instead, with multi-resolution
pre-computation, we could make such associated decompression overhead as less as
possible.

Table 3 Rendering time for the Blunt-fin dataset for different simplification ratios,
where the simplification ratio is defined by 1−1/2i. Image resolution is set at 128 × 128.

Fig. 6 Time-critical rendering of the Blunt-fin and Combustion Chamber datasets for different
simplification ratios. Image resolution is set at 128 × 128.

6 CONCLUSION

Although lossless compression is an effective technique to reduce the storage
requirement and run-time disk access cost for very large irregular volume datasets, it
cannot reduce the rendering computation overhead because the number of tetrahedra that
a renderer needs to process remains unaffected with or without lossless compression.
Volume data simplification, on the other hand, provides a volume rendering system the

TIME-CRITICAL RENDERING OF TETRAHEDRAL MESHES 13

additional flexibility to trade off rendering time and quality. Unfortunately, most previous
research on volume data simplification focused on the development of standalone
simplification tools that are never integrated into the renderer. As a result, unlike in
surface rendering, where a polygonal renderer uses simplification as an effective control
tool to adjust rendering accuracy and performance at run time, volume simplification has
rarely been an integral part of a volume renderer as a dynamic adaptation mechanism.
This paper describes the first irregular-grid volume rendering system that integrates not
only volume simplification with rendering, but also volume decompression, into a single
seamless pipeline. With this integrated pipeline, simplification becomes an active element
of a volume rendering system, and each piece of volume data is brought into the main
memory only once as it travels through the decompression, simplification, and rendering
steps. We have successfully implemented the proposed integrated decompression /
simplification / rendering pipeline on our Gatun system. Empirical measurements on the
Gatun prototype show that the additional performance overhead associated with runtime
simplification is less than 5% on an average compared to the same pipeline without
simplification. However, with simplification in place, the rendering performance can be
improved only by a factor of up to 2 because the entire dataset still needs to be touched at
least once regardless of the simplification ratio. To address this problem, we propose a
multi-resolution pre-simplification scheme similar in spirit to mip-mapping, which
effectively reduces the end-to-end rendering time to be about inversely proportional to
the simplification ratio, and makes a powerful building block for time-critical rendering.

In the future, we plan to integrate not only the view-independent simplification, but
also the view-dependent simplification into our framework, given that the latter should
provide more room for more aggressive simplification during run-time data browsing. We
are also investigating other simplification primitives other than vertex merge or edge
collapse which can be integrated into our framework.

REFERENCES

1. C. Yang, T. Mitra, and T. Chiueh, “On-the-Fly Rendering of Losslessly Compressed
Irregular Volume Data,” inIEEE Visualization ’2000, pages 101–108, 2000.

2. W. J. Schroeder, J. A. Zarge, and W. E. Lorensen, “Decimation of Triangle Meshes,”
inSIGGRAPH ’92, pages 65–70, July 1992.

3. Paul Hinker and Charles Hansen, “Geometric Optimization,” in IEEE
Visualization ’93, pages 55–64, 1992.

4. Alan D. Kalvin and Russell H. Taylor, “Superfaces: Polygonal Mesh Simplification
with Bounded Error,” IEEE Computer Graphics and Applications, 16(3):64–77, May
1996.

5. Greg Turk, “Re-tiling Polygonal Surfaces,” in IEEE Visualization ’92, pages 55–64,
1992.

6. J. Rossignac and P. Borrel, “Multi-Resolution 3D Approximation for Rendering
Complex Scenes,” Geometric Modeling in Computer Graphics, pages 455–465,
1993.

7. M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle,
“Multiresolution Analysis of Arbitrary Meshes,” in SIGGRAPH ’95, pages 173–182,

CHUAN-KAI YANG AND TZI-CKER CHIUEH14

August 1995.
8. H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle, “Mesh
Optimization,” in SIGGRAPH ’93, pages 19–26, July 1993.

9. H. Hoppe, “Progressive Meshes,” in SIGGRAPH ’96, pages 99–108, August 1996.
10. H. Hoppe, “View-Dependent Refinement of Progressive Meshes,” in
SIGGRAPH ’97, pages 189–198, August 1997.

11. Julie C. Xia and Amitabh Varshney, “Dynamic View-dependent Simplification for
Polygonal Models,” in IEEE Visualization ’96, pages 327–334, 1996.

12. J. Cohen, A. Varshney, D. Manocha, G. Turk, and H.Webber, “Simplification
Envolopes,” in SIGGRAPH ’96, pages 119–128, August 1996.

13. J. El-Sana and Y. Chiang, “External Memory View-Dependent Simplification,”
Computer Graphics Forum (Eurographics ’2000), 19(3):139–150, 2000.

14. P. Cignoni, L. D. Floriani, C. Montani, E. Puppo, and R. Scopigno, “Multiresolution
Representation and Visualization of Volume Data,” IEEE Transactions on
Visualization and Computer Graphics, 3(4):352–369, December 1997.

15. P. Cignoni, D. Costanza, C. Montani, C. Rocchini, and R. Scopigno, “Simplification
of Tetrahedral Meshes with Accurate Error Evaluation,” in IEEE Visualization 2000’,
pages 85–92, October 2000.

16. K. J. Renze and J. H. Oliver, “Generalized Unstructured Decimation,” IEEE
Computer Graphics and Applications, 16(6):24–32, 1996.

17. M. H. Gross O. G. Staadt, “Progressive Tetrahedralizations,” in IEEE
Visualization ’98, pages 397–402, October 1998.

18. I. J. Trotts, B. Hamann, and K. I. Joy, “Simplification of Tetrahedral Meshes with
Error Bounds,” IEEE Transactions on Visualization and Computer Graphics,
5(3):224–237, 1999.

19. P. Chopra and J. Meyer, “TetFusion: An Algorithm for Rapid Tetrahedral Mesh
Simplification,” in IEEE Visualization ’2002, pages 133–140, October 2002.

20. C. S. Co, B. Heckel, H. Hagen, B. Hamann and K. I. Joy, “Hierarchical Clustering
for Unstructured Volumetric Scalar Fields,” in IEEE Visualization ’2003, pages
325–332, October 2003.

21. A. V. Gelder, V. Verma, and J. Wilhelms, “Volume Decimation of Irregular
Tetrahedral Grids,” in Computer Graphics International 1999 Conference
Proceedings, pages 222–, 1999.

22. J. Schneider and R. Westermann, “Compression Domain Volume Rendering,” in
IEEE Visualization ’2003, pages 293–300, October 2003.

23. R.Farias, J. Mitchell, C. Silva, and B. Wylie, “Time-Critical Rendering of Irregular
Grids,” in Proceedings of the XIII SIBGRAPI International Conference, pages 243–,
2000.

24. T.Mitra and T. Chiueh, “A Breadth-First Approach to Efficient Mesh Traversal,” in
Proceedings of the 13th ACM SIGGRAPH/Eurographics Workshop on Graphics
Hardware, pages 31–38, September 1998.

25. L. Williams,“Pyramidal Parametrics,”in SIGGRAPH’83, pages 1-11, 1983.

TIME-CRITICAL RENDERING OF TETRAHEDRAL MESHES 15

Chuan-Kai Yang (楊傳凱) received his Ph.D. degree in
computer science from Stony Brook University, New York,
USA, in 2002, and his M.S. and B.S. degree in computer
science and in mathematics from National Taiwan University in
1993 and 1991, respectively. He has been an Assistant
Processor of the information management department, National
Taiwan University of Science and Technology, since 2002. His
research interests include computer graphics, scientific
visualization, multimedia systems, and computational geometry.

Tzi-Cker Chiueh (闕志克) is currently a Professor in
Computer Science Department of Stony Brook University. He
received his B.S. in EE from National Taiwan University, M.S.
in CS from Stanford University, and Ph.D. in CS from
University of California at Berkeley in 1984, 1988, and 1992,
respectively. He received an NSF CAREER award in 1995. Dr.
Chiueh’s research interest is on computer security,
network/storage Qos, and wireless networking.

