
I/O-Conscious Volume Rendering

Chuan-Kai Yang Tzi-cker Chiueh

State University of New York at Stony Brook∗

Abstract

Most existing volume rendering algorithms assume that data sets
are memory-resident and thus ignore the performance overhead of
disk I/O. While this assumption may be true for high-performance
graphics machines, it does not hold for most desktop personal work-
stations. To minimize the end-to-end volume rendering time, this
work re-examines implementation strategies of the ray casting al-
gorithm, taking into account both computation and I/O overheads.
Specifically, we developed a data-driven execution model for ray
casting that achieves the maximum overlap between rendering com-
putation and disk I/O. Together with other performance optimiza-
tions, on a 300-MHz Pentium-II machine, without directional shad-
ing, our implementation is able to render a 128x128 grey-scale im-
age from a 128x128x128 data set with an average end-to-end de-
lay of 1 second, which is very close to the memory-resident ren-
dering time. To explore the feasibility of automatically convert-
ing memory-resident algorithms into I/O-conscious ones, this pa-
per presents an application-specific file system that transparently
maximizes the overlap between disk I/O and computation without
requiring application modifications.

1 Introduction

Volume rendering takes a volumetric data set and generates a 2D
image. One of the most prevalent volume rendering algorithms is
ray casting, which shoots imaginary rays through the data sets and
accumulates the contributions of voxel data along each ray accord-
ing to color and opacity mappings from raw data values. Despite
the fact that volumetric data sets are inherently huge, most previous
ray casting algorithms research reported performance numbers, as-
suming that data sets are entire memory-resident. This assumption
is not valid when individual data sets are too large to fit into main
memory (out-of-core rendering), or when users need to browse or
explore a large number of data sets. Such assumptions tend not to
hold especially on personal workstations, where volume visualiza-
tion technology is gradually gaining grounds.

The motivation of this work is to develop a high-performance
volume rendering system on commodity PCs without special hard-
ware support, with a focus on reducing theend-to-endrendering
delay, including the disk overhead of bringing the data sets in and
out of the host memory. The key technique to minimize the perfor-
mance impacts of disk I/O is to overlap disk operations with ren-
dering computation so that the disk I/O time is masked as much as
possible. To achieve this goal, a volumetric data set is decomposed
into blocks, which are stored on disks and accessed as indivisible
units. As data blocks are retrieved from disks, rendering computa-
tion on those blocks that are brought in earlier proceeds simultane-
ously. In this execution model, theminimumtotal rendering time
for a disk-resident data set is the sum of the rendering time when
the data set is entirely memory-resident, and the time required to
fetch the first data block.

∗Department of Computer Science, State University of New York at
Stony Brook, Stony Brook, NY 11794-4400. Emails:{ckyang, chi-
ueh}@cs.sunysb.edu

Surprisingly, the above overlapping execution model is difficult
to get right in practice. This paper documents the process through
which we arrive at what we believe the optimal incarnation of
this execution model:data-driven block-based volume rendering,
which hides most of the disk I/O delay while at the same time en-
sures that a data block is completed exercised once it is brought
into memory from the disk. The bottom-line result is that on a
300-MHz Pentium-II machine, without directional shading, this im-
plementation strategy is able to complete the task of rendering a
128x128x128 data set into a 128x128 image in 1 second on the av-
erage, including the disk I/O time.

The rest of this paper is organized as follows. Section 2 re-
views previous volume rendering work that paid attention to disk
I/O issues. Section 3 describes the design dimensions of I/O-
conscious volume rendering algorithms, and their associated per-
formance tradeoffs. Section 4 proposes a simple extension of this
work to do out-of-core visualization as well. Section 5 presents a
file system that attempts to automatically overlap disk I/O with al-
gorithm computation for any given program. Section 6 shows the
results of a detailed performance evaluation of the prototype imple-
mentation, which is built on top of a Pentium-II machine running
Linux. Section 7 concludes this paper with a summary of the major
research results, and a brief outline of on-going work.

2 Related Work

The main focus of this work is to reduce the disk I/O performance
overhead in volume rendering computation, particularly ray cast-
ing algorithms.Out-of-core renderingrefers to the case where the
rendering machine’s physical memory can not hold the entire data
set and thus need to perform disk I/Oduring the rendering process.
Cox [CE97, Cox97] studied this problem by examining the perfor-
mance impacts of the operating system interfaces on the disk I/O
cost, as well as related file cache management issues. In contrast,
our work attempts to use algorithm-specific prefetching to ensure
that the data blocks could be brought in before they are needed. The
proposed prefetching mechanism is closely tied with the rendering
computation, and is completely algorithm-specific.

This tightly integrated approach also sets itself apart from other
more general-purpose disk prefetching research. In predictive
prefetching [KE91], the system tries to “guess” (through interpo-
lation, for example) the future disk accesses based on the past ac-
cess pattern observed at run time. Compiler directed I/O[MLG92],
on the other hand, analyzes the program, and tries to insert I/O
prefetching instructions without getting hints from the applica-
tion programmers. Application-controlled prefetching [PGG+95,
CFKL95] provides procedural interfaces that allows the application
to tell, explicitly or implicitly, the underlying file system to retrieve
data beforehand. We have also developed a file system that supports
application-specific prefetching [MY00], which is to be described
in this paper briefly. The major difference between this file system
and others is that it supports application-specific disk prefetching
without requiring programmer involvement. Given a program, it
is capable of generating a prefetch thread that is scheduled to run
ahead of the original program thread, to ensure that data are fetched
into memory because they are needed.

Figure 1:A ray-cast image of the head data set, using floating point
computation.

One way to reduce the performance overhead due to disk I/O is
to use compression to cut down the I/O traffic volume. Wavelet-
based [TMM96] and DPCM-based [FY94] algorithms have been
developed to compress volume data sets in a lossless fashion. In
these cases, compressed volume data sets need to be decompressed
before being rendered. Chiueh et al. [CYH+97] described a tech-
nique to integrate lossy compression and volume rendering in a
unified framework, so that rendering can be performed directly
on compressed data volume. Another way is to identify the parts
of interest on disk first and load them into memory only or one
at a time, which essentially involves some “segmentation” work
[Fun93, USM97]. Our work assumes that the ray casting algo-
rithm is more computation-intensive than I/O-intensive, and there-
fore spending additional decompression computation or restricting
the data viewing scope to lower disk traffic is not considered a de-
sirable tradeoff. Rather, we focus on how tomaskthe disk I/O
delay.

3 I/O-Conscious Ray Casting Algorithm

3.1 Optimization for Memory-Resident Ray Cast-
ing Algorithm

To reduce the end-to-end volume rendering time, the performance
of the ray casting algorithm when the data set is completely
memory-resident should be optimized to the extent possible. We
have added the following performance optimizations to arrive at a
high-quality and high-performance ray caster, as the baseline case.

The first optimization replaces floating-point computation with
integer arithmetic, specifically in tri-linear interpolations. In ray
casting, it is the precision rather than the dynamic range of floating-
point arithmetic that is responsible for producing accurate rendering
results. However, most raw volumetric data sets come in the fixed-
point format, and the color/opacity transfer functions are also table-
driven and thus do not require floating-point arithmetic. By replac-
ing the floating-point numbers in tri-linear interpolation, which are
between 0.0 and 1.0, with 8-bit integers, we improve the overall
performance by almost an order of magnitude in certain cases on a
Pentium-II machine, because our ray caster uses only integer arith-
metic, and Intel processor’s floating-point hardware traditionally
lags significantly behind its integer counterpart. This optimization,
however, does not affect the rendering quality. For example, Figure
1, rendered through floating-point arithmetic, and Figure 2, ren-
dered through integer arithmetic, show no perceptible differences.

Figure 2: A ray-cast image of the same data set but using integer
computation.

The second performance optimization attempts to exploit the
instruction-level parallelism using the MMX instruction set exten-
sions available on the Pentium-II processor. In a word, MMX is ca-
pable of executing multiple low-resolution fixed-point operations in
parallel on a high-resolution datapath, e.g., 4 16-bit multiplications
on a 64-bit multiplier. One good candidate for MMX optimization
is tri-linear interpolation, which is expressed as follows:

px ∗ py ∗ pz ∗ d1 + (M − px) ∗ py ∗ pz ∗ d2+

px ∗ (M − py) ∗ pz ∗ d3 + (M − px) ∗ (M − py) ∗ pz ∗ d4+

px ∗ py ∗ pz ∗ d5 + (M − px) ∗ py ∗ (M − pz) ∗ d6+

px ∗ (M − py) ∗ pz ∗ d7 + (M − px) ∗ (M − py) ∗ (M − pz) ∗ d8 (1)

Here all variables are integers, andM is the maximal integer
value in the representable dynamic range.

MMX instructions operate against 8 MMX registers, each of
which is 8 bytes long. ThePMULHWinstruction multiplies four
signed words (2 bytes) in the destination MMX register by the four
signed words in the source MMX register, and writes the high-order
16 bits of the intermediate results to the destination MMX regis-
ter. SimilarlyPMULLWdoes the same but writes the low-order 16
bits. Another useful instruction isPMADDWD, which multiples four
signed words in the destination MMX register by the four signed
words in the source MMX register. The result is two 32-bit dou-
blewords. The two high-order words are summed and stored in the
upper doubleword of the destination MMX register. The two low-
order words are summed and stored in the lower doubleword of
the destination MMX register. ThePSUBWinstruction, which per-
forms four word-level subtractions at the same time, is useful for
the (M − p∗) terms above. By using these four instructions, we
create a new version of tri-linear interpolation that takes 37 instruc-
tions,. Unfortunately the performance of this code on Pentium-II
does not improve much over the non-MMX version, and in some
cases actually worsens. A careful analysis reveals the following
effects that explain the surprising under-performance:

• In order to use the MMX instructions, one must put the
operands in the MMX registers. Such preparation is
through packing/unpacking instructions, which are relatively
restricted. As a result, the computational effort associated
with “data preparation” is about 90% of the total computa-
tion time in our case, thus offsetting the performance gains
from MMX.

• The MMX instruction set is still not sufficiently expressive
for our purpose. For example, currently there are no MMX
instructions that allow to multiply eight 8-bit operands simul-
taneously, which would have reduced the total number of in-
structions required for tri-linear interpolation.

• Pentium-II is able to exploit instruction-level parallelism
much better than previous generations in the Pentium family,
thus reducing the desirability of performing tri-linear interpo-
lation using MMX. As an evidence, the performance of the
MMX version of tri-linear interpolation is actually 160% to
170% faster than the non-MMX version on a 200-MHz Pen-
tium processor with MMX support.

When volumetric data sets are represented as 3D arrays, the ad-
dress generation logic for the samples used in tri-linear interpola-
tion is susceptible for optimization. Specifically, the eight samples
used in tri-linear interpolation have a fixed and simple offset re-
lationship among themselves. By exploiting these relationships to
generate the memory addresses of the eight samples involved in
tri-linear interpolation, we are able to improve the rendering per-
formance by up to 15%.

The last optimization avenue that we explored is related to
caching. We discovered that the ray casting performances for dif-
ferent viewing directions could differ by as much as 30%, although
they require the same amount of computation. To improve the cache
performance, we have tried to cast a group of rays concurrently
rather than one ray at a time, so that each time a cache block is
brought in, it can be utilized as much as possible. However, be-
cause of the following two reasons, the ray group approach does
not improve the overall performance. First, as volume data sets
are stored as 3D arrays, cache blocks do not necessarily correspond
to data chunks required when casting a group of neighboring rays.
In other words, casting a group of rays simultaneously does not
always help in improving the likelihood that a cache block is com-
pletely utilized before it is replaced. Second, casting a ray group
entails additional storage overhead to keep the track of the progress
of each ray, as well as the related state maintenance processing cost.
The “house-keeping” work not only requires more memory space,
but also more memory accesses and associated address computation
work. Table 1 shows the result of a ray group implementation of the
conventional ray casting program. Note that if we use a step by step
traversal pattern among all the rays in a ray group, the traditional
worse case scenario (0 0 1), where you view the volume data par-
allel to the Z axe, becomes the best case, while the traditional best
case (1 0 0), where you view the volume data parallel to the X axe,
becomes the worst case. Therefore exploiting cache effect this way
cannot improve the performance universally. One can try to shrink
the working set size by using smaller ray group, but as shown in the
table, we can not gain anything in the sense of improving the worst
case.

Table 2 shows the performance improvement from each of the
performance optimizations. For a128 × 128 × 128 data set with
1-byte voxel and a128 × 128 rendered image, the measured ray
casting time is 0.68-1.0 sec on a 300-MHz Pentium-II machine.
At the same time, the time to retrieve the same data set from the
disk is 0.33 sec, assuming that the data set is laid out sequentially.
Therefore, it is essential to minimize disk I/O’s visible performance
overhead to reduce the end-to-end rendering time.

3.2 I/O-Conscious Ray Casting

The general strategy to mask disk I/O delay is to overlap disk I/O
with rendering computation. Each volume data set is decomposed
into 3D subcubes ormacro-voxels, which are stored contiguously
on the disk. However, when a macro-voxel is brought into memory,
the voxels arescatteredinto their corresponding positions in the 3D

array. In the ideal case, when a macro-voxel is being fetched from
the disk, the CPU performs rendering computation on the macro-
voxel that is brought in previously, and thus hides all the disk I/O
delay. Therefore, the minimum end-to-end rendering time when the
input data set is disk-resident is the time to fetch the first macro-
voxel plus the time to render the data set when it is completely
memory-resident. However, achieving such an ideal overlap be-
tween disk I/O and rendering computation remains elusive in prac-
tice.

The fundamental mechanism to mask the disk I/O delay is
to prefetch the macro-voxels in advance before they are actually
needed for ray casting computation. To ensure that the render-
ing computation should never be stalled due to unavailability of
required voxels, the sequence of macro-voxels that are prefetched
should be identical to the traversal pattern of rendering computa-
tion. In other words, the prefetch stream should traverse the volume
data set in exactly the same way as the rays cast. To achieve this ef-
fect, the prefetching module should execute the same traversal code
as used in the ray caster. Given a macro-voxel size,B × B × B,
it can be shown that as long as the origins of the rays that are cast
for prefetching purpose are at mostB pixels apart on the image
plane, and the sampling distance along these rays remain at 1, then
these rays can cover all macro-voxels in the input data set. During
prefetching-induced traversal, the algorithm checks whether each
sample on each ray steps into a new macro-voxel. If so, the al-
gorithm brings in the new macro-voxel from the disk; otherwise it
continues sampling along the ray.

In summary, the I/O-conscious ray casting algorithm consists
of two modules, one for casting rays and the other for prefetch-
ing macro-voxels according to the way rays are cast into the input
volume data sets. There are three dimensions along which one can
implement these two modules. The Cartesian product of the alter-
natives along each dimension constitutes the entire design space.

Software Structure Because the ray casting module is data-
dependent on the prefetching module, careful scheduling between
these two modules is essential to mask the disk I/O delay. The first
design alternative is to put these two modules in a single thread
within a single process, using theasynchronous read I/Ofacility
available in some operating systems, e.g.,aread on SUNOS and
Solaris, for prefetching purpose. Because the disk I/O occurs asyn-
chronously with respect to the requests, the CPU can continue with
rendering computation after setting up the disk read accesses ap-
propriately. It is the programmer’s responsibility to insert prefetch
calls at proper places in the programs, and to check whether asyn-
chronous I/Os are completed and to take proper actions when they
are done. In general, programming with asynchronous I/O is con-
sidered more complex and thus more error-prone. The other al-
ternative is to implement the prefetch and ray casting modules as
two separate threads but in the same process or address space. In
this case, it relies on the operating system to schedule these two
threads in a way that the prefetching module is able to bring in the
macro-voxels before the ray casting module accesses them. More-
over, switching between these two threads incurs a fixed but small
thread-level context switch overhead. Because Linux supports ker-
nel threads but not asynchronous disk I/Os, the current implemen-
tation uses the two-thread approach.

Volume Traversal Strategy The ray casting module can either
shoot one ray at a time or a group of rays concurrently. As more
rays are cast simultaneously, more states are required to maintain
the progress of each ray, and the accumulated color and/or opacity
values. On the other hand, the ray group approach enables more
processing parallelism in that as the number of concurrently cast
rays increases, the CPU is less likely to be idle for the lack of use-
ful work to do, In addition, because the prefetch module fetches one
macro-voxel at a time, the ray group approach is in a better posi-
tion than the one-ray approach to shorten thelive rangeof a macro-

Ray group size 0 0 1 0 1 0 1 0 0 1 1 1
128x128 1.38 1.36 1.91 1.34
64x64 0.97 0.98 1.50 1.06
32x32 0.98 0.97 1.28 0.99
16x16 0.91 0.87 1.00 0.86
8x8 0.94 0.89 0.99 0.85
4x4 1.00 0.91 0.96 0.87

Table 1: The memory resident execution time (in sec) for a 2MB data set with size (128 × 128 × 128) using different raygroup sizes and
viewing directions. Each reported value is an average of multiple measurements.

Optimization Performance Improvement
Replace Floating-Point with Integer 4 to 6 times faster

Using MMX 0% (Pentium-II) and 60-80% (Pentium) faster
Hand-Code Address Generation up to 15%

Table 2:Performance improvements from various optimizations to a generic ray caster implementation on a 300-MHz Pentium-II machine.

voxel, which is the interval between the time when a macro-voxel is
brought in and the time when it is accessed last. Smaller live ranges
increases the probability that a given physical memory region is
reused for different macro-voxels during the rendering process. Un-
like the CPU cache case, the overhead of state maintenance is well
worth the benefits it brings. Therefore, the ray group approach is
chosen in the current implementation.

Control Flow There are two ways to pass control between
the prefetch and ray casting modules. The traditional approach is
program-driven, which views the ray casting module as the dom-
inating entity that assumes control most of the time, and occa-
sionally passes control to the prefetch module to bring in the next
macro-voxel. This approach requires the system to check each ray
in the ray group to see whether the macro-voxel it needs to proceed
is available, and if so, advances the ray as far as it can, and then
repeats the cycle. When the entire ray group stops, the ray casting
module yields the CPU through busy-waiting, until the next macro-
voxel is brought into memory. The other approach for passing con-
trol is thedata-drivenapproach, which advances each ray exactly
the same way as the previous approach, but attaches the ray to the
macro-voxel that it is waiting for when it stops. Every time a macro-
voxel arrives, the system continues the processing for the set of rays
that are previously attached to this macro-voxel. The main perfor-
mance advantage of thedata-drivenapproach is that it allows the
use of larger ray groups, which improve the processing parallelism,
without incurring excessive synchronization checks, which will be
the case for theprogram-drivenapproach. Fundamentally this per-
formance difference comes from the fact that theprogram-driven
approach attempts to match data consumers (ray casting module)
against data producers (prefetching module), whereas thedata-
driven approach matches data producers against data consumers.
Because consumers become ready only when data becomes avail-
able, it is more efficient for data producers to notify consumers to
this effect than for consumers to poll for data availability. Our cur-
rent implementation thus chooses thedata-drivenapproach for con-
trol flow transfer.

Given these design decisions, the I/O-conscious ray casting al-
gorithm works as follows. The prefetch and ray casting modules
are implemented as separate threads. The prefetch thread traverses
the volume data sets in exactly the same way as the ray casting
thread, except that the adjacent rays it shoots areB pixels apart,
whereB is the dimension of the macro-voxel. The ray group size
is the same as the size of the image plane. That is, the ray cast-
ing thread starts with as many rays as there are pixels on the image

plane. Each ray is initially attached to the first macro-voxel that
it encounters while traversing through the volume data set. As the
prefetch thread traverses the input data set, it fetches from the disk
macro-voxels that have not been brought into memory previously.
Every time a macro-voxel arrives, the ray casting module contin-
ues the rays that are currently attached to the macro-voxel. Each
such ray will advance as far as possible, until it runs into another
macro-voxel that is not resident in memory, at which point the ray
is attached to the missing macro-voxel, or it runs to completion.

Figure 3 illustrates this process assuming a 2D data set and a
1D image plane. The prefetch thread shoots only rays in circles
whereas the ray casting thread shoots every ray. When the1-th ray,
initiated by the ray casting thread, reaches the1-th macro-voxel, it
checks whether the macro-voxel is already brought into memory. If
yes, it steps through the1-th macro-voxel along the1-th ray. Oth-
erwise, the ray casting thread enqueues the state of the1-th ray to
the work queue of the1-th macro-voxel. Figure 3 shows the con-
tent of each macro-voxel’s work queue when each ray first touches
the volume data set boundary. In this case, when the2-th macro-
voxel is loaded into memory, Ray 3, 4, 5 and 6 will be dequeued
in that order and proceed as far as possible until they reach another
macro-voxel that is not memory-resident.

4 Extension to Out-of-Core Rendering

Because the ray group size is the entire image plane, this means that
whenever a macro-voxel is brought in,all the rays that need this
macro-voxel to advance will be processed before the next macro-
voxel arrives. This ray processing pattern leads to two important
advantages. First, it exposes the maximum amount of parallelism
by identifying all possible rays that are ready to continue. Sec-
ond, it makes it possible to use a simple FIFO replacement pol-
icy for macro-voxels in the case of out-of-core rendering, because
once a macro-voxel is ”touched,” it is no longer needed in future
ray processing. For the macro-voxel access pattern to be truly
FIFO-like, macro-voxels need to be overlapped with each other by
1 voxel to ensure that each macro-voxel is self-contained during
tri-linear interpolations even for rays that pass through the bound-
aries. That is, aK ×K ×K logical macro-voxel actually contains
(K+ 2)× (K+ 2)× (K+ 2) voxels physically. However, in gen-
eral, the access pattern to macro-voxels is not always FIFO-like,
because some macro-voxels that are brought in earlier may be par-
tially blocked by others that are scheduled to be fetched in later.

1 2 3 4 5 6 7 8

1
2

3

4

12

rays

8 7

 6 5 4 3

dequeue

enqueue

Image Plane

 queue
macro-voxel 2’s

macro-voxel 3’s
 queue

 queue
macro-voxel 1’s

macro-voxel 4’s
 queue

Macro-voxels

Figure 3:A data-driven rendering.

Consider ray 4 in Figure 3. If the first macro-voxel brought in is
macro-voxel 1, then because macro-voxel 2 that ray 4 needs is still
not in the memory, macro-voxel 1 will still be needed for ray 4
after its traversal of macro-voxel 2, thus making the macro-voxel
access pattern not FIFO-like. For the macro-voxel access pattern to
be truly FIFO-like, the prefetch thread should bring in the macro-
voxels according to their distances to the image plane. That is, the
closer a macro-voxel is, the earlier it should be brought into mem-
ory.

Instead of sorting all the macro-voxels based on their distances
to the image plane, the prefetch thread “pre-sorts” all the rays it ini-
tiates according to the distance between their corresponding pixels
on the image plane and the target data volume, and are organized
into a queue. The prefetch thread takes the head entry of the queue
out, traverses the next macro-voxel of the associated ray, checks if
the ray reaches its end, and puts the entry back to the tail of the
queue if the ray can still go on. As a result, the prefetch thread
traverses the macro-voxels in a breadth-first and pyramid-like fash-
ion, starting with the one that is closest to the image plane. The ray
pre-sorting overhead may be significant, but could be overlapped
with the time to fetch the closest macro-voxel from disk and is thus
masked.

However, the issue of how to identify the closest macro-voxel
without ray sorting still remains. Fortunately, it can be shown that
the closest macro-voxel to a given image plane must be one of the
eight corner macro-voxels in the data volume. So by comparing
the distances between these macro-voxels and the image plane, one
can locate the closest macro-voxel, and brings it in while perform-
ing ray pre-sorting. In the current implementation, the rendering
thread locates the first macro-voxel and fetches it from the disk. At
the same time, the prefetch thread performs ray pre-sorting to deter-
mine the macro-voxel traversal order. Orthonormal viewing direc-
tions should be special-cased, because in this case multiple closest
macro-voxels exist, to avoid mismatches between the macro-voxel
choices made by the ray casting and prefetch threads.

5 Application-Specific File Prefetching

Although the I/O-conscious ray casting algorithm successfully
masks most of the disk I/O delay, as will be shown in the next sec-
tion, it takes a great deal of tuning and algorithm-specific knowl-

edge to reach this level of performance. One may need to invest
the same amount of efforts to make another algorithm I/O con-
scious. It would be desirable if the principles underlying the I/O-
conscious ray casting algorithm could be implemented as a general-
purpose operating system facility that overlaps disk I/O and algo-
rithmic computation, so that existing applications can benefit from
it without any modification. We have developed a prototype file
system [MY00] under Linux for application-specific file prefetch-
ing (ASFP) that attempts to achieve this goal.

Given an applicationA, a separateprefetchprogram,P , could
be derived, manually or automatically, that includes all the file read
statements inP , as well as other program statements related to
the computation of file read statements’ input arguments. In other
words,P is just a subset ofA that does nothing but to perform file
reads in anon-blockingway, playing the same role as the prefetch
module with respect to the ray casting module in the previous sec-
tion. A andP run as distinct threads in the same process. The
operating system is modified to scheduleP sufficiently ahead ofA
so that there are enough prefetch calls fromP in the disk queue,
which ensure thatA is not stalled due to file system buffer misses,
thus masking the disk I/O delay in most cases.

The key advantage of this approach is that the generation ofP
fromA could be completely automated and thus transparent to the
programmers, and betweenP and the operating system,A’s file
reads should never incur synchronous disk I/Os because the re-
quested disk blocks have already been prefetched well in advance.
However, applying this application-specific file prefetching to a
generic ray caster still can not achieve the same level of overall
performance as the I/O-conscious ray casting algorithm described
in the previous section, because the latter’s data-driven computation
model exposes more parallelism and reduces unnecessary synchro-
nization check overheads.

6 Performance Evaluation

We have implemented a prototype ray caster that incorporates vari-
ous I/O-conscious performance optimizations described in the pre-
vious section. All the following performance measurements are
collected from a 300-MHz Pentium-II machine, except those for
application-specific file prefetching. The shading model we used is
post-shading model, i.e., only density values are interpolated dur-

ing ray traversal, and then mapped to color and opacity values. We
applied linear color and opacity tranfer functions and mapped the
density value range [0,max] to opacity value range [0,1], where max
is the maximal density value. Only grey-scale images are generated
and no directional shading is performed.

To overlap disk I/O with rendering computation, volume data
sets should be brought into memory incrementally in smaller units,
i.e., macro-voxels. Every time one macro-voxel of the input data
is available, rendering computation based on this macro-voxel can
proceed immediately, presumably in parallel with the disk access
for the next macro-voxel. Although smaller disk access granular-
ity facilitates the exploitation of parallelism between CPU and I/O,
it has an undesirable effect: the disk access efficiency may suffer
because a single sequential disk read of an input data set is now de-
composed into a sequence of disk reads, one for each macro-voxel.
On the other hand, when CPU processing and disk I/O are fully
overlapped, larger macro-voxel increases the start-up overhead, or
the time to bring in the first voxel. In the extreme case, the macro-
voxel is of the same size of the entire data set, which degenerates
into conventional “load and render” approach.

To understand the tradeoff between disk access efficiency and the
start-up overhead, we varied the macro-voxel size and measured the
total amount of time required to load a data set into memory. Table
3 shows the loading time measurements for a128 × 128 × 128
data set under different view angles. We found that64 × 64 × 64
appears to be the best choice considering both the total I/O time
and the start-up overhead. In all the following experiments, we
assume64 × 64 × 64 macro-voxels. Smaller macro-voxels do not
perform well because their associated disk access patterns tend to
cause excessive random disk head movements.

To evaluate the performance of the proposed I/O-conscious ray
casting algorithm on an end-to-end basis, we measured the render-
ing times for three data sets using the conventional approach, which
loads the entire data set and performs rendering, and using the data-
driven ray casting approach. Then we calculate the optimal bound
for the data-driven approach, which is the time to load the first
macro-voxel and the maximum of the two: the time to render a vol-
ume data set assuming it is entirely memory-resident, and the time
to load the remaining macro-voxels. The results are shown in Table
4. As the size of the data set increases, the performance difference
between the data-driven ray casting algorithm and the conventional
ray casting algorithm widens, because the disk I/O cost is playing
an increasingly important role.

Table 4 also demonstrates that the current implementation of the
data-driven ray casting algorithm is close to the theoretical optimal
bound. The performance difference between the current implemen-
tation and the optimal bound also decreases as the data set size in-
creases. This discrepancy comes from the prefetch thread’s compu-
tation, and additional macro-voxel boundary checks and state main-
tenance overhead during ray traversal.

To understand the performance gain of the proposed I/O-
conscious ray casting algorithm as processors get faster, we ren-
der only every other pixel on the image plane, to simulate a factor
of 4 improvement in rendering computation. The end-to-end delay
measurements for three data sets,CThead, LobsterandBrain and
for different view angles are shown on the last two rows in Table 4.
For large data sets, the performance gain of the proposed approach,
compared to the conventional approach, increases because the disk
I/O cost becomes more dominant and therefore the ability to mask
it is more important to minimize the end-to-end delay.

The program-driven approach insists that it finish the current
ray group before starting the next ray group, whereas the data-
driven approach, upon the retrieval of a macro-voxel, simply en-
ables whatever rays that are waiting for the macro-voxel. Because
the prefetching thread is sampling at a coarser resolution than the
rendering thread, the program-driven approach may suffer from ad-

Ray group size 0 0 1 1 1 1
128× 128 1.10 0.99
64× 64 1.31 1.15
32× 32 1.42 1.23
16× 16 1.46 1.23

Table 6:The rendering time for a 128×128×128 data set using the
ray group approach for different viewing directions and ray group
sizes. Here the macro-voxel size is 64× 64× 64.

ditional data waiting overheads due to mismatches between the
two threads’ traversal patterns. Such waiting would prevent the
program-driven approach from continuing with rays in other ray
groups, and thus lead to performance loss. Table 5 shows the per-
formance comparisons between the data-driven and program-driven
approaches for three different data sets,CThead, LobsterandBrain,
and for different view angles. In general, the performance differ-
ence between the two approaches increases as the viewing direction
moves away from the major axes, because the traversal pattern of
the prefetching thread tends to differ more from that of the render-
ing thread. As a result, the program-driven approach is more likely
to be delayed because the prefetch thread is less likely to bring in
all the macro-voxels in time for the rendering thread.

Under the data-driven approach, the rendering thread’s ray group
size should be increased as much as possible to maximize the num-
ber of ready rays and thus the amount of CPU parallelism. How-
ever, larger ray groups entail more states to be maintained simulta-
neously, potentially degrading the CPU cache performance. Table 6
shows how the ray group size affects the total rendering time under
different viewing directions. The results show that the rendering
performance improves with the increase in the ray group size. That
is, the performance gain from the ability to exploit more parallelism
always out-weighs the additional state maintenance overheads as
the ray group size increases.

The goal of application-specific file prefetching (ASFP) is to
reap all the performance benefits due to I/O and CPU overlapping
without going through a laborious tuning process tailored to indi-
vidual algorithms. We ran a program-driven ray caster on a Linux
system that supports ASFP and on one that does not, and compared
their rendering times for different macro-voxel sizes and viewing
directions. The results, measured on a 200-MHz PentiumPro ma-
chine for a256 × 256 × 256 data set, are shown in Table 7. The
performance difference between ASFP and non-ASFP systems de-
creases as the macro-voxel size increases, because larger macro-
voxel provides most of the prefetching benefits through sequential
prefetching. The reason that the performance gain from ASFP is
the most when the viewing direction is0 0 1 is because the data ac-
cess pattern associated with this viewing direction exhibits the least
spatial locality and thus larger macro-voxel does not help much.
The last column of Table 7 shows the amount of disk I/O delay that
the rendering thread experiences under ASFP, and gives an indi-
cation as to how effective the current ASFP implementation is in
masking disk I/O delays. ASFP currently uses a static flow con-
trol scheme to ensure that the prefetching thread runs sufficiently
far ahead of the ray casting thread without overflowing the buffer
cache. This scheme works reasonably well with orthonormal view-
ing directions. However, in the case of non-orthonormal directions,
the disk I/O time may increase substantially, and thus lead to buffer
underflows, which stall the ray casting thread.

The effectiveness of out-of-core rendering is best evaluated by
varying the amount of main memory available on a machine and
measuring the corresponding rendering performance. We simu-
lated machines with a different amount of memory by artificially
restricting the amount of memory available to the rendering pro-

Orthonormal Non-orthonormal
Macro Voxel Size 0 0 1 1 0 0 1 1 1 0.3 -0.8 0.4
128× 128× 128 0.33(0.33) 0.33(0.33) 0.33(0.33) 0.33(0.33)

64× 64× 64 0.30(0.070) 0.39(0.071) 0.40(0.070) 0.36(0.070)
32× 32× 32 0.30(0.020) 0.37(0.020) 0.60(0.030) 0.79(0.044)
16× 16× 16 0.34(0.039) 1.48(0.042) 3.25(0.037) 3.40(0.039)

8× 8× 8 0.25(0.038) 0.51(0.038) 3.25(0.037) 3.50(0.035)
4× 4× 4 0.28(0.018) 0.93(0.016) 4.20(0.025) 4.90(0.040)

Table 3: The total time (in sec) to load a 2MB data set (128 × 128 × 128) into memory using different macro-voxel sizes. Each reported
value is an average of multiple measurements. The numbers in parentheses are the start-up overhead.

CThead (2MB) 64×64 im-
age

Lobster (4MB) 128 × 128
image

Brain (8MB) 128 × 128
image

Viewing Di-
rection

Conventional
/Bound

Data-
Driven

Conventional
/Bound

Data-
Driven

Conventional
/Bound

Data-
Driven

0 0 1 1.33/1.10 1.10 2.97/2.43 2.60 5.63/4.36 4.78
1 1 1 1.01/0.75 0.91 2.49/1.90 2.07 4.86/3.59 3.88
0 0 1 0.61/0.33 0.46 1.3/0.79 0.92 2.43/1.33 1.60
1 1 1 0.56/0.33 0.58 1.3/0.80 1.17 3.37/1.33 2.10

Table 4:The comparison of rendering time (in secs) between the I/O-conscious data-driven ray casting algorithm, its optimal bound, and the
conventional load-and-render ray casting algorithm, for different data sets under different viewing directions. Measurements are made on a
300-MHz Pentium-II machine, assuming a 64× 64× 64 macro-voxel size.

CThead (2MB) 128×128×
128

Lobster (4MB) 256×256×
64

Brain (8MB) 256× 256×
128

Viewing
direction

Data-driven Program-
driven

Data-driven Program-
driven

Data-driven Program-
driven

0 0 1 1.10 1.25 2.33 2.34 4.78 4.80
1 1 1 0.91 1.40 2.07 2.74 3.88 4.98

Table 5:The rendering time comparison (in secs) between the program-driven and data-driven approaches for three data sets under different
viewing directions.

Macro-voxel size (Viewing direction) Without prefetching With prefetching I/O Delay
16(0 0 1) 68.95 31.76 7.0
16(1 1 1) 83.05 64.95 42.5
32(0 0 1) 36.87 31.23 7.3
32(1 1 1) 30.99 29.73 12.0

Table 7:The rendering time (in secs) for a 256×256×256 data set without prefetching and with prefetching (ASFP). The last column shows
the amount of disk I/O time that is not masked under ASFP.

Memory capacity 0 0 1 1 1 1
2 (512KB) 8.73 8.00
4 (1 MB) 8.74 8.02
8 (2 MB) 8.80 8.09
16 (4 MB) 8.90 8.22
32 (4 MB) 9.10 8.67
64 (16 MB) 8.80 8.64

Table 8:The rendering times for a 256× 256× 256 data set under
different viewing directions, assuming different amounts of memo-
ries, in terms of numbers of 64× 64× 64 macro-voxels and bytes.

gram. Table 8 shows the rendering times for a256 × 256 × 256
using the out-of-core rendering algorithm under different viewing
directions. That fact that the rendering times are within 8% of each
other demonstrates this algorithm’s insensitivity to the main mem-
ory size. Note that the data set itself takes 16 MBytes, but as men-
tioned before, to handle some boundary cases all the macro-voxels
should overlap each other by 1 voxel in width, which makes the
actual data size become about 18MBytes. Fortunately experiments
show that the extra disk I/O overhead associated with overlapping
is relatively insignificant.

7 Conclusion

In this paper, we studied the problem of hiding disk I/O delay as-
sociated with large-scale volume data set rendering. We attacked
this problem by considering in two steps: make the rendering as
fast as possible assuming the data set is already memory resident;
mask the I/O latency as much as possible by taking data loading
overhead into account. We tackle the former part of the problem
by (1) approximating floating-point computation with integer arith-
metic without causing perceptible loss of quality on the generated
images; (2) speeding up the address generation for the eight voxels
used in tri-linear interpolation by exploiting the fixed relationships
among them; and (3) employing MMX instructions to execute mul-
tiple instructions simultaneously. To effectively mask the I/O delay,
one has to overlap the disk accesses with rendering computation.
Data sets are divided into “sub-blocks” or “macro-voxels” to al-
low separate rendering and I/O threads to work on different macro-
voxels. To hide the disk I/O delay, the prefetch thread should pre-
ceed the rendering thread for each macro-voxel accessed. We have
developed an innovative data-driven approach to exploit as much
parallelism as possible while at the same time reducing unneces-
sary synchronizations checks to the minimum. By incorporating all
these optimizations, given a128 × 128 × 128 × 1(bytes) data set,
our system is able to render a128 × 128 grey-scale image in one
second on the average using a Pentium II 300MHz machine. For
larger data sets, the rendering time scales proportionally. More-
over, we found our system not only can mask the I/O overheads
effectively, but also can perform out-or-core rendering effectively
without much modification.

Currently, we are exploring the cache effects on the performance
of volume renderers. Although preliminary experiments show that
the our-of-core rendering implementation may be able to hold data
within L2 caches, a detail study on how to apply the idea of mask-
ing the disk I/O delay to hide the memory access delay is needed. In
addition, some lossy or lossless data compression algorithms may
be applied on top of the current I/O-conscious scheme, provided
the decompression rate dominates the data loading rate. Further-
more, in this work, we assume the renderer works on regular-grid
data sets. Irregular-grid data sets, whose data access pattern is less
predictable, requires more research to mask the corresponding disk

I/O delay. Finally, systematically extending this work to a paral-
lel computing system with a parallel I/O facility is another research
direction that we intend to pursue in the future.

References

[CE97] M. Cox and D. Ellsworth. Application-controlled de-
mand paging for out-of-core visualization.Visualiza-
tion ’97, October 1997.

[CFKL95] P. Cao, E. W. Felten, A. Karlin, and K. Li. A study
of integrated prefetching and caching strategies.ACM
SIGMETRICS Conference on Measurement and Mod-
eling of Computer Systems, May 1995.

[Cox97] M. Cox. Managing big data for scientific visualization.
ACM SIGGRAPH ’98 Course, August 1997.

[CYH+97] Tzi-Cker Chiueh, Chuan-Kai Yang, Taosong He,
H. Pfister, and A. Kaufman. Integrated volume com-
pression and visualization.Visualization ’97, pages
329–336, October 1997.

[Fun93] T. A Funkhouser.Database and Display Algorithms for
Interactive Visualization of Architectural Models. PhD
thesis, University of California at Berkeley, 1993.

[FY94] J. Fowler and R. Yagel. Lossless compression of vol-
ume data. InProceedings of Visualization ‘94, pages
43–50, October 1994.

[KE91] D. Kotz and Carla Schlattr Ellis. Practical prefetch-
ing techniques for parallel file systems.First Interna-
tional Conference on Parallel and Distributed Informa-
tion Systems, December 1991.

[MLG92] Todd C. Mowry, Monica S. Lam, and Anoop Gupta.
Design and evaluation of a compiler algorithm for
prefetching.The Fifth International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, pages 62–73, October 1992.

[MY00] Tulika Mitra and Chuan-Kai Yang. Application-
specific file prefetching for multimedia programs. In
IEEE Multimedia 2000, July 2000.

[PGG+95] R. H. Patterson, G. Gibson, E. Ginting, D. Stodolsky,
and J. Zelenka. Informed prefetching and caching.15th
ACM Symposium on Operating System Principle, De-
cember 1995.

[TMM96] A. Trott, R. Moorhead, and J. McGinley. Wavelets ap-
plied to lossless compression and progressive transmis-
sion of floating point data in 3-d curvilinear grids.Vi-
sualization ’96, pages 385–388, October 1996.

[USM97] S. K. Ueng, K. Siborski, and K. L. Ma. Out-of-core
streamline visualization on large unstructured meshes.
ICASE Report, April 1997.

