
1 23

Signal, Image and Video Processing
 
ISSN 1863-1703
 
SIViP
DOI 10.1007/s11760-013-0462-1

A HCI interface based on hand gestures

Chuan-Kai Yang & Yu-Chun Chen



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer-

Verlag London. This e-offprint is for personal

use only and shall not be self-archived in

electronic repositories. If you wish to self-

archive your work, please use the accepted

author’s version for posting to your own

website or your institution’s repository. You

may further deposit the accepted author’s

version on a funder’s repository at a funder’s

request, provided it is not made publicly

available until 12 months after publication.



SIViP
DOI 10.1007/s11760-013-0462-1

ORIGINAL PAPER

A HCI interface based on hand gestures

Chuan-Kai Yang · Yu-Chun Chen

Received: 23 August 2012 / Revised: 11 December 2012 / Accepted: 13 March 2013
© Springer-Verlag London 2013

Abstract Human–computer interaction, or HCI for short,
concerning how people interact with computers, has long
been an important and popular research field. Though not
completely realistic, fancy HCI applications such as those
shown in the science fiction movies Minority Report and Iron
Man have impressively demonstrated the potential and trend
of HCI technologies that will be very soon made available.
As one can very often observe, compared with traditional
keyboard/mouse interfaces, the exclusive use of hands has
distinguished itself by enjoying a more intuitive and natural
way for communication. Furthermore, the increasingly popu-
lar concept of ubiquitous computing has called for convenient
and portable input devices, thus making hand gesture inputs
even more attractive. For example, a smart phone equipped
with the capability of hand gesture recognition could be a
good input substitute for its intrinsically small touch screen
or keypad. Rather than data gloves, which transfer hand ges-
tures through relatively expensive electronic devices, we are
more interested in recognizing the gestures of a bare hand.
In this regard, there exist works that can track a 2D articu-
lated hand model. In this paper, we make further improve-
ment in computation efficiency and propose novel interfaces
to be coupled with the hand tracking system for more user-
friendliness.

Keywords Hand tracking · Hand gesture recognition ·
Human–computer interaction · Skin detection

C.-K. Yang (B) · Y.-C. Chen
Department of Information Management,
National Taiwan University of Science and Technology,
43, Section 4, Keelung Road, Taipei 10607, Taiwan
e-mail: ckyang@cs.ntust.edu.tw; M9609114@mail.ntust.edu.tw

1 Introduction

Since the invention of computers, the related technologies
have been rapidly developed and advanced. In particular,
the way we interact with computers has become more and
more diversified, and thus, the emergence of the field called
human–computer interaction, or HCI for short. In fact, in a
broad sense, if we view many embedded systems as different
forms of computers, the scope of HCI can include a wide
range of scenarios from the music playback on a hand-held
device, to the dashboard display on an airplane and so on.
Keyboards and mice have long been the main devices we used
to interact with computers. However, there also exist other
possible interfaces/devices that can be used to communicate
with computers. For example, data gloves is one of them,
and by wearing a data glove, a user’s hand gesture can be
sensed and used as an input to interact with computers. Such
a device can offer desired accuracy, but its relatively higher
expense limits its popularity. In recent years, Nintendo’s Wii
Remote has become one of the most popular input devices as
it can provide a “wireless” control interface through which
some hand motions can be detected. As a result, it becomes
possible to remotely control or interact with computers, and
especially for gaming. Microsoft’s Kinect sensor is another
emerging technique that quickly gains significant popular-
ity. By detecting depths through infrared cameras, it opens
the door for capturing more motion information and thus
has also been widely used for computer or game interac-
tions. However, the need to carry an extra Wii Remote device
and the current inaccuracy of Kinect sensors still leave room
for further improvement on HCI, especially when more con-
trol accuracy is desired. Nevertheless, it is easy to see the
exclusive use of hands in the new trends of interaction as it
is quite natural for a human to communicate through hand
gestures. Another observation is the popularity of portable

123

Author's personal copy



SIViP

or hand-held devices, which can be laptops, tablet PCs, or
even smart phones. There are at least two things in common
on these devices: a relatively smaller screen space and the
equipment of a camera. Such a configuration makes a hand
tracking system more attractive than before, and this is why
this work is motivated. In short, the contribution of this work
is to propose a hand tracking system that, based on previ-
ous work but further improves the efficiency. In addition,
we developed two novel interfaces that could facilitate the
mouse and keyboard operations and at the same time make
the proposed system much easier to be combined with other
window applications.

The rest of the paper is organized as follows. Section 2
reviews works related to this paper. Section 3 provides a
background to make it easier for understanding our proposed
methods. Section 4 presents our approaches for designing a
hand tracking system. Section 5 describes the novel window
interfaces we propose. Section 6 concludes this work and
gives suggestions for possible future directions.

2 Related work

Vision-based methods for detecting or tracking objects have
been important research issues. And it has become popular to
make use of this technology for HCI. For example, based on
the detected image or video frames, we could perform face
detection or human body detection or even activity detec-
tion. According to the detected results, computers can then
react in a proper way and thus achieve the effect of HCI.
Among the vision-based technologies, hand tracking is what
we concerned in this work. Generally speaking, there are at
least four types of approaches, where they can be based on 3D
model information, skin color detection, image difference, or
machine learning algorithms.

The first type of approaches is based on a hand’s 3D model
information, such as the work proposed by Rehg [10]. In
general, multiple cameras are needed, and thus, there is not
much limitation on how a hand should behave. However,
the requirement of multiple cameras and the more involved
computation make such an approach relatively inappropriate
for common HCI.

The second type of approaches depends on skin detection,
as the appearance of skin colors could be an important clue
of the existence of a hand. Based on this idea, many sys-
tems incorporate such a functionality for hand detection. For
example, Manresa et al. [9] extracted the skin colors of a user
during the initialization stage and then use the extracted infor-
mation to further identify the locations of hands. Zaletelj et
al. [17] first performed face detection, which is usually con-
sidered relatively easier, and then made use of the detected
facial skin colors to help discover the hand colors. In general,
in spite of its simplicity, skin color detection still suffers from

the following limitations. For example, the exposure of arms
or the confusion of backgrounds with skin-like colors, and so
on, could make it more difficult to judge the exact locations
of target hand (palm) area.

The third type of approaches is based on image difference,
as proposed by [4,7,16] for hand detection. The main idea is
to first maintain (derive) a background image, and then, we
can calculate its difference with other images. The advantage
of such an approach is its ability to locate an object in motion.
In particular, in [4,7] a color difference color system is used as
it is known to be less affected by the lighting variation. The
most serious limitation of an image difference approach is
on the stability of the background image, which cannot work
properly if the camera is a hand-held one or if the background
is not static.

The last type of approaches makes use of machine learn-
ing. Rowley et al. [11] were among the earliest ones to apply
the machine learning technique on face detection. Viola et
al. [13] proposed a very classical approach, called AdaBoost,
to detect human face, and then applied a cascading classifier
to significantly speed up the detection. Due to such a success-
ful application of machine learning algorithm, Wu et al. [15]
applied a neural network approach for hand detection. Fahn
et al. [3] made use of AdaBoost to detect finger tips. Though
being able to locate the finger tips of a hand, it is not always
possible to derive the entire hand gesture or shape, thus lim-
iting the freedom of hand motion. As a result, they proposed
many combinations of hand gestures to overcome the limita-
tion, at the expense of requiring a user to memorize numerous
hand gestures. Therefore, its usefulness may be affected.

To sum up, there are many possible approaches that can be
used for hand tracking, but each of them has its pros and cons.
In this work, we adopt the idea of contour tracking, a simpli-
fied version of the first type of approaches, and we only need
to measure the probability of each possible (hypothetical)
contour through the measurement lines on the contour. Com-
pared with many other approaches where the entire image
(frame) is involved in the computation, a contour tracking
framework is much faster. In addition, a successful contour
tracking can also help us to understand the current hand shape
and thus the desired motion as a whole.

3 Background

In the ensuing sections, we will describe the involved tech-
niques in this hand tracking system, including deformable
templates, particle filtering, and sweep tracker. Particle filters
and deformable templates have been combined and applied
on hand contour tracking [1,6,12]. Isard et al. [5] built a con-
tour tracking framework, which combines particle filtering
and deformable template into a Condensation algorithm, as
it is abbreviated from Conditional Density Propagation, and

123

Author's personal copy



SIViP

Fig. 1 The measurement method

its strength lies on its ability to track object’s contour over a
possibly complex background with rather limited resource.

3.1 Deformable templates

Based on the approaches proposed by Blake et al. [1], we
represent the hand for tracking as a deformable template con-
sisting of a set of B-splines, where each of them is controlled
by a vector called state. Through such a mechanism, each
B-spline can be made to scale, translate, rotate, etc. In the
ensuing discussion, each deformable template or contour,
represents the (hand) shape we plan to track.

3.2 Measurement method

Figure 1 briefly shows how we perform our measurement.
For each measurement point, there will be a measurement
line, along which we detect the features in a frame to deter-
mine the score of this measurement point. Here, the features
are referring to skin color or edge, to be described detailedly
in Sects. 4.3.2 and 4.3.3, respectively. The multiplication of
all the scores of the measurement points on all measurement
lines lead to a fitness value that tells how well a hypothetical
contour fits the real contour. In this figure, the blue rectan-
gle is a hypothetical contour, the dark gray region the real
contour, the red dotted line a measurement line, the red line
the Gaussian distribution that is used to calculate the score,
the red dot the measurement point, and the green dots the
detected features, respectively. As a result, each red dot will
lead to a score. In practice, as the calculation of a fitness
involves the multiplication of scores measured on many mea-
surement lines, we apply the acceleration method proposed
by Tosas [12] to pre-calculate the scores on the Gaussian dis-
tribution so that at the run time, the score of each measure-
ment point can be obtained through a simple table-lookup.

3.3 Condensation algorithm

By combining the concepts of particle filtering and deforma-
ble template, the Condensation algorithm [5] treats each

contour as a particle, which represents the state of a hypothet-
ical contour xi , and its corresponding weight πi is the fitness
of the contour. The main idea of Condensation algorithm is
to repeatedly perform one of the three operations of resam-
pling, prediction and measurement to “evolve particles”. We
now briefly describe these three operations.

Resampling At the beginning of this operation, we will
perform sampling on the particle set by n times, where
the probability for a particle to be chosen is equal to
its weight πi . As a result, those particles with higher
weights may get selected many times, thus causing the
replication of these particles in the updated particle set for
the next round. On the other hand, some lower-weighted
particles may not be included in the updated particle set
as they are not sampled. After the resampling process,
the new particles do not have their associated weights.
How the new weights are obtained is described later in
the measurement stage.
Prediction As the particles in the new particle set come
from the previous phase, the dynamics should be put into
consideration. In fact, to incorporate the dynamics means
to predict, the future behavior of the particles involved.
In this work, we adopt the second-order auto-regressive
processes (ARPS), proposed by Blake et al. [1], to repre-
sent the state xt at time t by a linear combination of its
previous two states, together with a Gaussian noise:

xt = A2xt−2 + A1xt−1 + Bw (1)

where A1 and A2 are the deterministic components, while
B a randomized component and w an independent ran-
dom variable N (0, 1), respectively. The values of A1, A2

and B are determined according to the experiments in
this paper.
Measurement In this stage, all particles are new particles,
with their states being predicted according to their corre-
sponding dynamics. However, their new weights are not
yet assigned. For this, we calculate the fitness of each par-
ticle, i.e., each hypothetical contour, with respect to the
target contour, by analyzing corresponding image fea-
tures. This calculation determines the weight of a parti-
cle. After all, the weights of all particles are determined,
these weights have to be normalized to be within 1 to
facilitate ensuing computation. The resulting particle set
is again sent back to perform the first operation, that is,
resampling, repeatedly, until the tracking process being
stopped.

3.4 Sweep tracker

In our implementation, we adopt a hierarchical deformable
template where the first level is the palm, the second level

123

Author's personal copy



SIViP

Fig. 2 The angular search, cited from [12]

includes four fingers and the proximal phalanx of the thumb
(the part closer to the palm), and the third level is the distal
phalanx of the thumb (the part closer to the thumb tip). The
Condensation algorithm is used to track the palm, while we
use the sweep tracker algorithm [12] to track the angle and
length of fingers. The latter algorithm is a deterministic algo-
rithm and can offer much faster and better response when
compared with existing partitioned sampling approach [8]
that is normally used to track hierarchical or tree-structured
objects. After the weights of all particles being calculated,
we pick the particle with the highest weight and then search
the angle for each finger in the corresponding hypothetical
contour to obtain the fitness. The angle leading to the high-
est fitness is chosen as the detected angle for that finger. To
accelerate the search process, the initial angle and length for
a finger are set to be their corresponding values in the pre-
vious frame. The search for a finger’s angle starts from the
initial angle, rotating counter-clockwisely, rotating back to
the initial angle, and then rotating clockwisely, as shown in
Fig. 2. Once the angle with the best fitness score for a fin-
ger is found, we can then determine the finger’s length, and
the involved algorithm will be described in detail in the next
section.

4 Implementation and improvements

In this section, we describe how the hand tracking is ful-
filled and how the improvements are made. In particular,
we apply an articulated hand template to track a hand,
and based on the basic framework presented in the previ-
ous section, we will describe a measurement model based
on skin color, and how skin colors are detected. In addi-
tion, we discuss how to detect a closing-hand gesture where
there are no gaps between fingers. Finally, we propose meth-
ods to further improve upon existing approaches, including
the Condensation algorithm, resampling mechanism, finger
length detection, and the sweep tracker algorithm. To sum up,
these improvement altogether can make the proposed hand

Fig. 3 The hand contour template

tracking system more computation efficient and at the same
time much easier to be combined with other potential appli-
cations.

4.1 Articulated hand template

By assuming that the hand to track moves perpendicularly to
where the camera is pointing at, we adopt the articulated
hand template similar to [12]. There are totally 50 con-
trol points for the B-splines that constitute the hand con-
tour, as shown in Fig. 3a. In order to let each finger to
move freely, each finger can rotate about its pivot, which
is located at the finger pivots region on the palm. Moreover,
to be able to express more gestures, each finger is allowed
to bend, thus affecting its length. To make detection eas-
ier, we only allow the thumb to move parallelly to the palm
plane, and therefore, it can bend toward other fingers. As a
result, the thumb is composed of two segments, where the
first segment (proximal phalanx) is connected to the palm,
and the remaining part is the second segment (distal pha-
lanx). As shown in Fig. 3b, there are 14 degrees of freedom,
(x, y, α, λ, θ0, l0, θ1, l1, θ2, l2, θ3, l3, θ4, θ5), where (x, y) is
the central location, and (α, λ) are the rotation angles of the
tracked hand, respectively, while (θi , li ) are the angle and
length of a particular finger. In general, (x, y) is set to be the
center position of the frame, α is set to be 0 degree, while λ

is set be 1, initially and respectively. Moreover, the angle for
each finger is also set to be 0. Note that the thumb pivot is not
centered around its shape, so that the associated contour can
more easily model its movement. Finally, except the thumb,
the length of each finger is initially set to be 1. As for the
thumb, since we assume it can only move parallelly to the
palm, the lengths of its two segments are fixed.

4.2 Dynamic model

To predict an articulated contour model, we assume that
each knuckle behaves like an independent oscillator where
the values of damping constant β, natural frequency f , and

123

Author's personal copy



SIViP

Table 1 The parameters in the dynamic model

β (s−1) f (H z) ρ

x 6 0 50 pixels

y 6 0 45 pixels

α 6 0 0.3 rad

λ 6 0 0.1

root-mean-squared average displacement ρ are set according
to [1]. As in this work, we apply the Condensation algorithm
only on representing the dynamics of the palm, and we show
the palm-related parameters in Table 1. Similar to Tosas’s
work [12], we assume the tracked hand is not always vibrat-
ing, and therefore, f is always set to be 0. In our implemen-
tation, as discussed in Sect. 3.3, the dynamic model involves
three terms, A1, A2 and B. Here, we empirically set the val-
ues of A1 and A2 to be −0.6 and 1.6, respectively, to obtain
good prediction effect, while B is still generated using the
original dynamic model.

4.3 Contour measurement model

The hand contour fitness is calculated based on what is
described in Sect. 3.2, and the measurement is also done
through measurement lines; however, we also take colors
into consideration.

4.3.1 Measurement line

Figure 4 depicts the configurations of measurement lines.
There are totally 70 measurement lines, out of which 19 are
on the palm, 10 on each finger but the thumb, 5 on the proxi-
mal phalanx of the thumb, and 6 on the distal phalanx of the
thumb, respectively. The measurement lines on the palm or
the thumb are set perpendicular to their corresponding con-
tours, while their settings on the remaining fingers are a bit
different. For each finger (except the thumb), 8 of the mea-
surement lines that are closer to the palm are deployed to
be perpendicular to the finger orientation (angle), while the
rest two parallel with the finger orientation. The length of
each measurement line is about 20 pixels. Regarding how to
obtain measurement lines perpendicular to associated con-
tours, it can be referred to Blake et al.’s work [1] for more
details. In fact, not only the orthogonality is concerned, but
also the interior and exterior of the involved contour should
be distinguished for ensuing processing. For illustration pur-
pose, here we draw a measurement line with different colors
where the further into the exterior region a more saturated
red color is used, while the interior region, a more saturated
blue color. Note that as we need to examine each and every
pixel on these measurement lines, we implement the Bre-

Fig. 4 The measurement lines are perpendicular to the hand contour

senham algorithm [2] for the line-drawing process, and due
to the potential rotations of lines, the lengths of lines may
not be exactly 20 pixels. However, we will make sure that
the average length of measurement lines is still around 20
pixels.

4.3.2 Skin-based measurement for hand contours

For skin color detection, we adopt the linear container clas-
sifier proposed by Tosas [12]. To detect the skin colors of
a user, such a classifier can be obtained very efficiently in
terms of computation and memory consumption. As a result,
by adopting such a classifier alone, we already can track a
target skin-colored object with a certain degree of success-
fulness.

The way to compute the fitness of a hypothetical contour
is as follows. Along each measurement line on the hypo-
thetical contour, from the outermost pixel to the innermost
pixel, if two consecutive pixels are detected to be of skin
colors, then we judge that a contour edge point is encoun-
tered. The distance between this point and the center of the
measurement line, i.e., the measurement point, is calculated
and table-lookuped to obtain a score. The scores from all
measurement lines are multiplied to derive the fitness of this
hypothetical contour. Each aforementioned score is calcu-
lated based the integral samplings from a Gaussian distribu-
tion, and the table to lookup is shown in Table 2. Note that
the score ranges from 0.5–2, which means each measurement
can double or halve the fitness calculated so far. In the case
where no skin pixels are detected, the largest distance, i.e.,
10 is resulted, and thus, the score of 0.5 is returned. As there
are 70 measurement lines, the value of fitness ranges from
270 ≈ 1.180 × 1021 to 0.570 ≈ 8.47 × 10−22.

A naive way to obtained the aforementioned distance may
involve floating point computation such as squared root that
is normally considered computation expensive. To simplify
and thus accelerate this calculation, we could map the pixels
on the measurement line to the range from −10 to 10 by
the following steps. We maintain a “distance” variable that
is initially 0 and increases by one when we advance from the

123

Author's personal copy



SIViP

Table 2 The measurement scores

Dist. Score Dist. Score Dist. Score

0 2.0000 4 1.8801 8 0.8737

1 1.9995 5 1.7232 9 0.6408

2 1.9922 6 1.4805 10 0.5000

3 1.9610 7 1.1767

outermost pixel to the innermost pixel along a measurement
line. When a skin-colored pixel is encountered, we subtract
half the length of the measurement line from the distance
variable, divide it by the length of the measurement line to
normalize the value to be within the range from 0 to 1, and
finally multiply it by 21 to finish the mapping. By taking the
absolute value of this mapped value and a table-lookup, the
corresponding score can be retrieved.

A table-lookup and a simplified distance calculation make
the computation very efficient. Furthermore, the way of using
two skin pixel occurrence helps to distinguish the correct
contour. More specifically, on one hand, if all pixels on a
measurement line are skin-colored or non-skin-colored, the
corresponding fitness value will be halved. On the other hand,
only when a more correct contour is encountered, it is then
possible to have a score higher than 0.5. As a result, such a
mechanism helps to enlarge the difference between a low-
fitness hypothetical contour and a high-fitness one.

4.3.3 Edge detection

Adopting the skin color detection alone is still not enough, as
a user may close his/her hand as shown in Fig. 5 so that the
previously mentioned measurement process may get erro-
neous results. This is because a half portion of many mea-
surement lines will be enclosed by the skin-colored area,
and thus, their associated scores will be halved to affect the
fitness value. To solve this, we adopt the edge detection tech-
niques as in Tosas’s work [12]. The idea is to apply an edge
detector, which outputs a larger value when a larger change
of image brightness is encountered. A threshold is used to
guard against a valid edge, and when there are more than
one edge points on a measurement line, only the one that
is closest to the measurement point is chosen. When both
skin colors and edge features are considered, a 2D Gaussian
function is used to calculate the score. And again to speed
up the computation, the involved function evaluation com-
putation can be pre-calculated so that at the run time only
table-lookups are needed. Figure 5 shows the contour of fin-
gers for a closing-hand gesture that can be correctly detected
after applying the edge detection mechanism.

Fig. 5 The hand contour after applying the edge detection

4.4 Improved resampling mechanism

As mentioned in Sect. 3.3, the Condensation algorithm con-
sists of three steps, resampling, prediction, and measurement.
To further improve the performance, we choose to only apply
particle filtering on the palm, which is associated with 250
particles, while dealing with the rest via the sweep tracker
algorithm. In Blake et al.’s work [1], the resampling process
is random, whereas in Tosas’s work [12], the resampling
process was only performed on the top 10 % of the old par-
ticles. We make an even drastic change by resampling only
on the best one. In practice, such a choice not only speeds up
the computation, but also maintains a reasonable quality.

4.5 Improved sweep tracker algorithm

In Sect. 3.4, we described the sweep tracker algorithm pro-
posed by Tosas [12]. The basic idea is to search for the posi-
tions of fingers and the algorithm is more efficient than the
original particle sampling algorithm in that it improves in
terms of both speed and accuracy. We implement the sweep
tracker algorithm and found that it can be further improved
due to the fact that human gesture may change rapidly and
human fingers can only rotate up to a certain range of angles,
which can be obtained experimentally.

More specifically, as the original sweep tracker algorithm
starts its search from the best previously estimated angle and
length, during our implementation, we observed the follow-
ing problem. Assuming in the previous state, a finger is with
its shorted length due to a fist gesture, and at the next moment,
the gesture is rapidly changed so that the corresponding fin-
ger increases its length. As a result, the search for the current
angle of the finger may be incorrect and thus also an incorrect
estimation of the finger’s length. It may take a hand tracking
systems more rounds of search to finally “catch up” with the
change of gestures, so a delay of hand tracking can be per-
ceived. To resolve this issue, when a finger’s length is smaller
than a threshold and we are to perform the sweep tracker algo-
rithm to search for all angles, an increase in finger’s length,

123

Author's personal copy



SIViP

Fig. 6 Sweep tracker algorithm and its improved version

called SearchLength, is considered. Figure 6a shows the orig-
inal sweep tracker’s angle search for a finger’s movement,
and note that it is a bit simplified for illustration purpose.
Figure 6b shows how we increase the search range, where
the increased portion is marked in red. Through numerous
experiments, we found that setting the value of SearchLength
to be 0.2 leads to the best result. Finally, as the original sweep
tracker algorithm always searches angles up to a fixed range,
in our implementation, we adjust the angular search range
to be the previous angle minus or plus SearchAngle, so that
the actual search range is reduced, and at the same time, we
can refine the step size of the angular search. Therefore, with
the same number of searches, we can capture more precise
finger change. Figure 6c shows the reduced but denser sweep
tracker search, where the two gray lines are the original angu-
lar search bounds. In our implementation, with SearchAngle
being 0.3, we get the most satisfactory result.

4.6 Improved finger length detection algorithm

One of the most important applications of finger length esti-
mation is to detect the events like click and dragging events,
as will be described in the next Section. Originally, we adopt
the approach proposed by Tosas [12]; however, we found
there is room for further improvement.

According to Tosas [12], as shown in Fig. 7, the way to find
a finger’s length is to make use of two longer measurement
lines, which are parallel to the finger’s angle, and span from
the finger’s pivot region to the position that is a bit farther
than the finger tip. And to find the length of a finger, we start
from the end in the pivot region to the other end, until a “non-
skin-colored” pixel is found and thus the end of skin area, or
equivalently the end of the finger is determined, so the length
of the finger can be obtained.

More detailedly, to make the whole process more accu-
rate, the interference of noise must be considered. For this,
and according to Tosas [12], the updated finger’s length is
detected by maintaining an array of size 25 (pixels). By
treating the skin area as the foreground, the following mor-
phological operations are performed: an erosion of radius 1
(pixel), a dilation of radius 25, and an erosion of radius 24.
As a result, the array is examined to determine the changed

Fig. 7 Finger length detection, cited from [12]. a The blue contour
shows the original (longer) finger contour. b The red contour is used to
measure the changed finger’s length. c The updated finger contour

finger’s length. However, in order to perform these morpho-
logical operations, one extra array is needed.

We propose an improved version for finding the updated
finger’s length without the need of an extra array, and most
importantly, we only need to scan each pixel just once to
derive the answer. One important observation is that, the
purpose of the first morphological operation is to get ride
of continuous skin pixels whose length is less than 3 pixels,
as these pixels are most likely to be noise. Therefore, they
should be just ignored. At the same time, we also need to
patch the hole of size 25 due to the dilation operation. To do
that, we use one variable, called count25, to record the length
of consecutive non-skin pixels examined so far. As shown in
Fig. 8a, where T means a skin pixel and F means a non-skin
pixel. As this one skin pixel region will be gone after the mor-
phological erosion operation, the count25 value should be 3
when it comes to the last pixel. Similarly in Fig. 8b, count25
is 4. However, in Fig. 8c, the value for count25 should be 1
as there are already three consecutive skin pixels. Figure 9
shows a more complex example. Let us examine some repre-
sentative cases. At pixel (A), after seeing three consecutive
skin pixels, count25 is reset to 1, as we see the first non-skin
pixel. At pixel (B), after seeing only two skin pixels, count25,
which has remained as 6 for the past two skin pixels, should
be added up to 9 to reflect the equivalent result after apply-
ing the morphological erosion operation. At pixel (C), it is
similar to the case at pixel (A). At pixel (D), it is similar to
the case in pixel (B). Finally, at pixel (E), since count25 has
been accumulated to 25, we then can retrieve the last loca-

123

Author's personal copy



SIViP

Fig. 8 Three scenarios, where the rightmost pixel represents the cur-
rent pixel

Fig. 9 A more complex scenario

Table 3 The noise variation bounds

Variation Lower bound Upper bound

x 2 pixels 4 pixels

y 2 pixels 4 pixels

α 0.03 rad 0.05 rad

λ 0.02 0.03

tion where the (long enough consecutive) skin pixels were
encountered, that is, the location prior to pixel (C) will be
returned. Note that this is also the finger’s length that we
want to detect, and we have achieved the same result without
using an extra array. As a consequence, it is also much faster.

4.7 Improved dynamic noise mechanism

In order to make hand tracking system to function correctly
even in face of rapid gesture changes, Tosas [12] propose a
dynamic noise variation mechanism called Variable Process
Noise, which offers stable tracking result as a hand stays
relatively stationary and still tracks accurately in the case
where more dynamic hand gestures are experienced. Here,
the dynamic noise is the term Bw described in the Conden-
sation algorithm, where w is a normally distributed noise
N (0, 1), and B is a constant governing the size of the asso-
ciated noise.

However, as we have made improvement over the resam-
pling process proposed by Tosas [12], the original dynamic
noise approach is no longer applicable. To address this, we
propose to modify the noise variation according to the pre-
vious two best particles. Table 3 shows the noise variation
upper bounds and lower bounds that we reference to adjust
the value of B. Recall that a (hand) particle’s state vector con-
tains four parameters (x, y, α, λ), and if both the variations
of the previous two particles are larger than their correspond-
ing upper bounds, then B is set to be 1.75 times of its original
value; if both of the variations of the previous two particles
are smaller than their corresponding lower bounds, then B

is set to be half of its original value; otherwise, B stays the
same. Through such a modification, even a more rapid hand
motion can be tracked.

5 Novel window interface

In this section, we present the novel window interface we
designed to facilitate friendly HCI. The proposed window
interfaces allow a user to perform window operations with-
out mouse or keyboard while only a common webcam is
needed. Moreover, with the help of hand gestures, oftentimes
it becomes much easier to achieve many window operations.
For example, opening a webpage, enlarge or shrink current
window, and so on, can be accomplished with a short-distance
hand movement and a (detected) click. When a user wants to
input texts, a simple hand gesture can bring up a virtual key-
board interface to suit the need of entering numbers, alpha-
bets, and so on.

5.1 System flow

Figure 10a shows the system flow in this work. During the
standby mode, our system continuously monitoring the fit-
ness of each frame, and when it is higher than an initial
threshold, our system enters the initialization mode. When
the fitness is higher than the initial threshold for 10 consec-
utive frames, then we enter into the operation mode. When
the fitness is lower than a stop threshold for 3 consecutive
frames, we view that the hand tracking is effectively lost, and
therefore, we return to the standby mode. In the operation
mode, as shown in Fig. 10b, there are three states to denote
three different interface situations, which can be switched on
alternatingly by bending the distal phalanx of the thumb with
the ring finger being bent in advance. In the first state, there
is no interface displayed and our system will just emulate
the mouse movement by following the hand. In the second
state, a mouse interface is displayed, and at the same time, the
mouse movement is still emulated. In the third state, a key-
board interface is displayed for entering textual input, and to
avoid potential interference, the mouse simulation is turned
off.

5.2 Initialization

During the standby mode, our system will initialize many
parameters, and as a user presents his/her hand in front of the
webcam, the standby mode begins. In this mode, the hand
contour is drawn in red, as shown in Fig. 11a, and this indi-
cates the case that the hand’s fitness is still below a desired
initial threshold, or equivalently, the user’s hand contour has
not been placed in a proper position. Figure 11b represents
the case where the fitness value has reached the initial thresh-

123

Author's personal copy



SIViP

Standby Mode
Detecting the fitness of each frame

User skin color adjustment

Initializing tracking position

Initialization Mode

Fitness > initial threshold

Fitness > initial threshold

Click detection

Hand tracking 

Operation Mode

 for 10 consecutive frames

Fitness < stop threshold

for 3

consecutive frames

System Flow Operation Mode

Display keyboard interface

Simulate mouse movement

Display mouse interface

No interface

No mouse movement
simulation

Hand gesture change

Hand gesture change

Hand gesture change

Simulate mouse movement

(a) (b)

Fig. 10 a The system flow of this system. b The operation mode in the system flow

Fig. 11 Hand contour initialization

old, so the hand contour is drawn in green to show that our
system enters the initialization mode and starts the tuning
of some parameters, which includes the skin color classifier
and hand position initialization. Once this matching status
has lasted for 10 consecutive frames, the hand contour turns
to blue, as shown in Fig. 11c, it means the hand tracking
process starts to function, that is, our system enters into the
operation mode. On the other hand, if the fitness is smaller
than a stop threshold for 3 consecutive frames, our system
deems this as lost of hand contour, and thus goes back to the
standby mode, and waiting to enter the initialization mode
next time.

As mentioned, the parameter tuning in the initialization
mode includes two parts, hand position initialization and skin
color classifier. Hand position initialization means setting the
hand contour with the highest fitness to be the current tracked
position. As for skin color classifier, our system makes use
of the 10 consecutive frames to find the best linear container
classifier, and in particular, the user’s skin colors and the
current lighting will both be taken into consideration.

5.3 Click/dragging detection

A hand tracking system needs to track not only where a hand
is, but also what its gesture is. Regarding the gesture, the most
important task is to detect the click and dragging events.

Note that the clicking position can also be determined as
the whole hand is under the tracking process. To emulate
a dragging, we set a finger length range; that is, once the
tracked hand is moving with the finger’s length falling within
the specified range, a dragging is triggered.

Click threshold For detecting a click, we need to
detect the change of a finger’s length. To do so, we
applied the technique EWMA (Exponentially Weighted
Moving Average) [12] to see if the length of a tracked
finger falls below a threshold, called lower control limit
(LCL), and if so, a click is triggered.
Dealing with hand vibration Even when we are able to
detect a click, oftentimes some hand vibrations may cause
undesired click events. To avoid this, we modify the click
triggering mechanism so that only when a finger’s length
is shorter than LCL for 2 consecutive frames, a click is
then triggered.
Click position In this work, there are mainly two inter-
faces involved, namely the mouse interface and key-
board interface. When the mouse interface is enabled,
we assume the hand center is where we want to set the
mouse cursor. In addition, when a click happens, if the
clicking finger is the index finger, we assume the left
mouse button is pressed; similarly, the middle finger cor-
responds to the right mouse button. On the other hand,
when the keyboard interface is enabled, we assume that
each finger can press any of the buttons on the virtual
keyboard, and therefore, the click position, in this case,
is where a finger shrinks its length.
Dragging event Dragging is an indispensable operation
commonly adopted in a window environment. The way
we detect a dragging event is as follows. Whenever we
detect a click, we store the current finger’s length as Click-
Length. By means of this length, we can derive a dragging

123

Author's personal copy



SIViP

Fig. 12 A color change to indicate the occurrence of a depth change
event

threshold by the following:

DragT reshold = ClickLength + Margin (2)

where Margin can be different for each finger and is an
adjustable parameter. A larger value indicates that it takes
longer time to end a dragging. When a finger’s length
is smaller than Drag Treshold, a dragging event starts;
otherwise, a dragging event ends.

5.4 Depth change event

A hand-based tracking system can offer more freedom when
compared with traditional systems using mice and keyboards.
One interesting and novel event that our window interface can
detect is a depth change. Recall that during the initialization
mode mentioned in Sect. 5.1, some hand configuration can
be recorded. Such information can be used to determine if
the depth of the tracked hand changes significantly by com-
paring the hand size before and after the movement. Once
such an event is recognized, the hand contour changes its
color to orange, as shown in Fig. 12, and it can be linked to
an interesting window operation: push the current focused
window to the background. Such a motion is not trivial for
traditional mouse and keyboard system, whereas it is a very
natural movement for a hand.

5.5 Hand devibration

When simulating mouse movement with a hand, the hand
position, shown in the video frame, will be mapped to the
screen. In general, as a screen normally has a higher reso-
lution, the intrinsic minor hand vibration will be inevitably
enlarged and thus affect the click position. To solve this, we
perform a weighted average of the previous detected hand
position, PrevPos, and the currently detected one, CurrPos
by the following:

Curr Pos = 0.2 × Curr Pos + 0.8 × PrevPos (3)

Fig. 13 The mouse interface

Through such a scheme, the original vibration phenomenon
is effectively reduced by such a smoothing mechanism.

5.6 Virtual touch panels

To facilitate desired window HCI, we have also implemented
two virtual touch panels, one for the mouse, and one for the
keyboard, as shown in Figs. 13 and 14, respectively. These
interfaces can be displayed alternatingly via a specific hand
gesture or some hot keys. When a user first enters the opera-
tion mode, he/she can use the gesture mentioned in Sect. 5.1
to switch on the mouse interface. To make it easier to use,
when the mouse interface is shown, its displayed position will
be adjusted so that the current mouse cursor (the center of the
tracked hand contour) will become the center of this mouse
interface. This adjustment allows a user to quickly locate the
desired keys without moving for a long distance. There are
three groups of (function) keys, as shown in Fig. 13, where
some red labels are marked to ease the description. The labels
with S initials are related to the hand tracking system, where
(S1) is start or stop, which can be used to combine with a
media player to control a media’s playback, (S2) is to close
a system or window, while (S3) is to display some system
state information. The labels with Q initials are related to
Windows applications shortcuts, where (Q1) is equivalent to
the same key on a keyboard to start some basic Windows
functions, while (Q2) to (Q6) execute the applications of
MSN, Calculator, Showing Desktop, File Manager, and Web
Browser, respectively. Finally, the labels with A initials are
for more complex combination of keys, where (A1) and (A2)
for switching the current active window, while (A3) and (A4)
serve the same functionalities as combining the Ctrl key and
the mouse wheel to produce the zoom in and zoom out oper-
ations.

By the same switching gesture, the keyboard interface will
pop up to replace the mouse interface. To avoid confusion,
the keyboard interface will not block the mouse cursor when
it appears, and as mentioned, the mouse movement simu-
lation also stops. Similarly, the functions on the keyboard
interface can be explained according to the red labels. The

123

Author's personal copy



SIViP

Fig. 14 The keyboard interface

region marked as (N1) contains the keys for entering num-
bers, while the region marked as (N2) the keys for entering
English alphabets. The keys with the F initial labels are for
executing functions, which correspond to the same function-
alities as the keys on a normal keyboard. Note that when a
key on the keyboard interface is pressed, the key will change
its color to provide a user the feeling of pressing a key. When
a key combination such as Shift and Ctrl are pressed, both of
them will remain red, until the user presses another key so
that their original colors are restored.

5.7 Results and system environment

This system was implemented on a machine with Intel Core 2
Duo 1.86 GHz, 3 GB memory, running on Windows XP. The
camera in use is Logitech’s QuickCam which can process
frames of size 640 × 480 at the speed of 30 frames per sec-
ond. The programming language for development is C# and
the DirectShow library is used for capturing video frames.
For the result demonstration, as it is difficult to present HCI
through static images, we opt to produce some video demos
of the proposed system. These files are packed together and
zipped and can be downloaded from http://star7.cs.ntust.
edu.tw/ckyang/hand_sivp_video.zip. There are several video
files included. The file named initialization.avi shows how
the proposed system performs the initialization, as described
in Sect. 5.2. The file named switch_interface.avi demon-
strates how we can switch among the different interface con-
figurations through a specific hand gesture, as mentioned
in Sect. 5.1. The file named dragging.avi shows how the
technologies discussed in Sects. 5.3 and 5.6 are combined
to perform a window dragging through the proposed mouse
interface. The file named push.avi illustrates a scenario where
we make use of the detection of a depth change event, as
explained in Sect. 5.4, to “push” the current active window
to the background while exposing the window that is the next
to the top to become the current active one. The file named
keyboard.avi demonstrates how we can enter textual inputs
through a virtual keyboard interface, whose functionalities
are detailed in Sect. 5.6. Finally, the files named sweep-
tracker_original.avi and sweeptracker_improved.avi com-

pare the results from the original sweep tracker algorithm
proposed by Tosas [12] and from our improved sweep tracker
algorithm. As shown in these two videos, a rapid gesture
change such as altering from a fist gesture to an opening hand
gesture may result a delay in the detection, as mentioned in
Sect. 4.5. On the other hand, by adopting our improved algo-
rithms both on sweep tracker and finger length detection, as
described in Sects. 4.5 and 4.6, the sudden change can be
more promptly captured and reflected, thus offering a more
visually pleasing result.

6 Conclusion and future work

This paper presents a hand tracking system that improves
both the Condensation algorithm proposed by Blake and
Isard [1], and the hand tracking system proposed by Tosas
[12]. The proposed system can offer real-time performance
and thus is more suitable for being integrated with other appli-
cations. We have also developed two novel window inter-
faces with virtual touch panels to be coupled with the hand
tracking system to further assist desired and friendly human–
computer interactions in a Windows system. Compared with
other systems, the proposed work can detect events such as
click, dragging and also a novel type of a depth change, and
with the help of many hand gestures, it is a more powerful
tool for HCI.

However, for the concerns of simplicity and therefore effi-
ciency, currently, our hand gestures is still confined to be
“2D”, that is, a tracked hand cannot rotate toward the screen,
as potential occlusions could happen to confuse the recog-
nition result. In the future, how to efficiently generalize the
hand tracking system to be able to deal with full 3D motions
is worth further studying. In fact, Wang et al. [14] did some
work along this line; however, it is at the expense of con-
structing of a hand pose database in advance. Furthermore,
the functionality of multi-touch, currently not implemented
for the purpose of efficiency, is also another possible future
direction.

Acknowledgments This work was supported in part by the National
Science Council under the Grant NSC 97-2221-E-011-109.

References

1. Blake, A., Isard, M.: Active Contours. Springer, Berlin (1998)
2. Bresenham, J.E.: Algorithm for computer control of a digital plot-

ter. IBM Syst. J. 4(1), 25–30 (1965)
3. Fahn, C.S., Yang, C.N.: Two-hand fingertip identification and ges-

ture recognition techniques applied for human-computer interac-
tion systems in real time. Master’s thesis, National Taiwan Univer-
sity of Science and Technology (2009)

4. Hardenberg, C.V., Berard, F.: Bare-hand human-computer intera-
cion. In: Proceedings of the ACM Workshop on Perceptive User
Interfaces (2001)

5. Isard, M., Blake, A.: Condensation—conditional density propaga-
tion for visual tracking. Int. J. Comput. Vis. 28(1), 5–28 (1998)

123

Author's personal copy

http://star7.cs.ntust.edu.tw/ckyang/hand_sivp_video.zip
http://star7.cs.ntust.edu.tw/ckyang/hand_sivp_video.zip


SIViP

6. Isard, M., MacCormick, J.: Hand tracking for vision-based draw-
ing. Technical report, Visual Dynamics Group, Department of
Engineering Science, University of Oxford (2000)

7. Letessier, J., Berard, F.: Visual tracking of bare fingers for inter-
active surfaces. In: UIST ’04: 17th Annual ACM symposium on
User Interface Software and Technology, pp. 119–122 (2004)

8. MacCormick, J., Isard, M.: Partitioned sampling, articulated
objects, and interface-quality hand tracking. In: European Con-
ference on Computer Vision (2000)

9. Manresa, C., Varona, J., Mas, R., Perales, F.J.: Hand tracking
and gesture recognition for human-computer interaction. Electron.
Lett. Comput. Vis. Image Anal. 5(3), 96–104 (2005)

10. Rehg, J.: Visual analysis of high dof articulated objects with appli-
cation to hand tracking. Ph.D. thesis, Carnegie Mellon University
(1995)

11. Rowley, H., Baluja, S., Kanade, T.: Neural network-based face
detection. IEEE Pattern Anal. Mach. Intell. 20, 22–38 (1998)

12. Tosas, M.: Visual articulated hand tracking for interactive surfaces.
Ph.D. thesis, Nottingham University (2006)

13. Viola, P., Jones, M.: Robust real-time face detection. Int. J. Comput.
Vis. 57(2), 137–154 (2004)

14. Wang, R.Y., Popović, J.: Real-time hand-tracking with a color
glove. ACM Trans. Graph. 28(3) (2009). http://dl.acm.org/citation.
cfm?id=1531369

15. Wu, X., Xu, L., Zhung, B., Ge, Q.: Hand detection based on self-
organizing map and motion information. In: IEEE International
Conference on Neural Networks and Signal Processing (2003)

16. Yuan, X., Lu, J.: Virtual programming with bare-hand-based inter-
action. In: Proceedings of the IEEE International Conference on
Mechatronics and Automation (2005)

17. Zaletelj, J., Perhavc, J., Tasic, J.F.: Vision-based human-computer
interface using hand gestures. In: Eight International Workshop
on Image Analysis for Multimedia Interactive Services (WIAMIS’
07) (2007)

123

Author's personal copy

http://dl.acm.org/citation.cfm?id=1531369
http://dl.acm.org/citation.cfm?id=1531369

	A HCI interface based on hand gestures
	Abstract 
	1 Introduction
	2 Related work
	3 Background
	3.1 Deformable templates
	3.2 Measurement method
	3.3 Condensation algorithm
	3.4 Sweep tracker

	4 Implementation and improvements
	4.1 Articulated hand template
	4.2 Dynamic model
	4.3 Contour measurement model
	4.3.1 Measurement line
	4.3.2 Skin-based measurement for hand contours
	4.3.3 Edge detection

	4.4 Improved resampling mechanism
	4.5 Improved sweep tracker algorithm
	4.6 Improved finger length detection algorithm
	4.7 Improved dynamic noise mechanism

	5 Novel window interface
	5.1 System flow
	5.2 Initialization
	5.3 Click/dragging detection
	5.4 Depth change event
	5.5 Hand devibration
	5.6 Virtual touch panels
	5.7 Results and system environment

	6 Conclusion and future work
	Acknowledgments
	References


