
Music Icons: Procedural Glyphs for Audio Files

Philipp Kolhoff Jacqueline Preuß Jörn Loviscach
Hochschule Bremen, University of Applied Sciences

Fachbereich Elektrotechnik und Informatik
28199 Bremen, Germany

{pkolhoff, jacqui}@fbe.hs-bremen.de jlovisca@informatik.hs-bremen.de

Abstract

Nowadays, a personal music collection may comprise
thousands of MP3 files. Visualization can help the user to
gain an overview and to find similar songs inside so large
a set. We describe a method to create icons from audio
files in such a way that songs which the user considers sim-
ilar receive similar icons. This allows visual data mining in
standard directory listings of window-based operating sys-
tems. The icons consist of bloom-like shapes, whose form
and color depend on eight parameters. These parameters
are controlled through a neural net, the input of which are
audio features that are extracted algorithmically from the
MP3 files. To adapt the system to the user’s perception and
interests, the neural net is initially trained with a small set
of songs and icons. User studies done on the system demon-
strate a strong perceptual relation between music and icons.

1 Introduction

Most current music content visualization methods aim at
producing two-dimensional charts where each actual song
occupies a certain xy position. Similar songs (where the
meaning of “similarity” remains to be specified) are auto-
matically placed close to another. Such an approach allows
to visually classify music for instance according to genre.
However, it breaks with the traditional display of files in
standard operating systems and does not offer correspond-
ing functions such as sorting, copying, deleting, and renam-
ing. Furthermore, the user must rely on the automatic place-
ment in the two-dimensional chart: The display does not of-
fer further visual clues. However, the xy position of some
songs may be grossly wrong since the reliability of auto-
matically extracted features is limited [2].

We introduce a different approach (see Figure 1), which
includes the following contributions:

Figure 1. Music Icons turn a standard file list-
ing into a user-adaptive visualization of audio
content.

• Every audio file is represented by an icon that is cre-
ated automatically from the audio content of the file.
This method is fully integrated with the file display in
Microsoft R© Windows R© XP.

• A procedural, bloom-shaped pattern is employed to
create the icons. This pattern may be used to visual-
ize other multi-dimensional data, too.

XIX Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'06)
0-7695-2686-1/06 $20.00 © 2006

• The user can specify guidelines on how the icons are
to be generated. To this end, the system is trained with
a handful of music files. Thus, the user’s visual im-
pression of the similarity of icons will match his or
her aural impression of music similarity. For instance,
one may create distinct icons for a some examples of
highly specialized subgenres of electronic music, but
only one icon for Country & Western.

• Since the icons display more than just two dimensions
of data, the user has a better chance to deal with situa-
tions in which some features behave abnormally.

• The system is not based on an explicit knowledge of
the musical or graphical meaning of the audio features
and the icon parameters, respectively. Instead, the con-
ceptual connection between music and icon exists only
in the user’s mind. Thus, we can create a user interface
that hides all technical details concerning audio fea-
tures and icon parameters.

The system can be used to find similar songs (known or
novel)—or to search for music that sounds fresh and dif-
ferent. The user can quickly survey the content of a drive,
in particular a removable disk or an MP3 player mounted
via USB. There is no need to laboriously enter metadata for
every song; all the user has to do is to choose icons for a
handful of prototypical music files.

The method works as follows, see Figure 2: The music
files are analyzed to compute features that give a concise
description; a neural net maps these features to parameters
used to procedurally create icons, which are handed over to
Microsoft R© Windows R© Explorer. The prototype has been
developed in C# for the .NET 2.0 platform using a number
of off-the-shelf helper libraries.

This paper is structured as follows: Section 2 gives an
overview on related work in icon generation and music
information retrieval. Section 3 describes the procedural
method employed to create icons. The audio features on
which the icons are based are discussed in Section 4; the
mapping from them to the icons’ parameters is covered in
Section 5. Section 6 gives details on the integration with
the operating system. Results are presented in Section 7.
Section 8 concludes, pointing out future work.

2 Related work

Lewis et al. [13] have introduced VisualIDs, the first ma-
jor approach to automatic file icon generation. The names
of the files are clustered; one icon is created per cluster and
mutated to equip every file of the cluster with a slightly dif-
ferent icon. The graphical creation of the icons is based on
shape grammars. In the first place, VisualIDs are intended

Neural Net

Training

MP3 Training Files

Icon ParametersClustered Features

Retrieval

MP3 Files from Explorer

Clustered Features
Icon Parameters

Training Icons

Icons

Figure 2. Music Icons rely on an association
of audio features with icon parameters. This
is accomplished through a neural net.

to be memorable and distinctive; reflecting the content is
only of secondary concern.

The Semanticons method by Setlur et al. [22] takes more
data into account, for instance abbreviations such as “fwd”
used in the filename and frequent noun phrases inside text
files. Based on these data, a stylized image is retrieved from
a prepared collection and laid over a standard icon such as
a sheet of paper with a dog’s ear. In contrast to VisualIDs,
Semanticons are intended to convey content. In particular,
tests on the mental association between filenames and Se-
manticons have been performed successfully.

A standard technique in Visual Data Mining [11] is to
display multidimensional data through glyphs such as Cher-
noff faces [6], or trees and castles [12]. More recent uses of
glyphs include complex shapes to support software visual-
ization [7] and implicit 3D surfaces [9] to be used for in-
stance in text retrieval. Ribarsky et al. [21] present Glyph-
maker, which allows the user to construct 3D shapes and
create data mappings.

Music information retrieval (MIR) systems aid the user
in finding music, most often music that is similar to a given
song. These systems may be based on subjective data col-
lected from users or experts, or they may rely on the wave
data inside the audio files. The latter may be given in sym-
bolic form such as MIDI files. In the general case, however,
all what an content-based MIR system sees is a collection
of MP3 files: sampled audio streams with no further data
such as (reliable) metadata.

XIX Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'06)
0-7695-2686-1/06 $20.00 © 2006

Typke et al. [23] give an overview of currently exist-
ing content-based MIR systems. The ISMIR 2004 Audio
Description Contest [5] revealed that up-to-date algorithms
yield success rates of 64 to 84 percent on the task of clas-
sifying an unknown title of music into a set of six genres
from “Classical” to “World.”

The standard intermediate step to classify audio files ac-
cording to their content is to drastically reduce the amount
of data: Instead of the millions of original samples one uses
tens of features. Typically, these are related to the spectral
distribution (pitch, timbre) or to the rhythm. A selection of
such features is for instance part of the MPEG-7 descrip-
tion [14] of an audio stream.

The standard choice for spectral features is a set of Mel-
Frequency Cepstral Coefficients (MFCCs): The audio sig-
nal is sliced into “frames” of for instance 46 ms duration;
these frames are subjected to a spectral analysis, which re-
sults in a logarithmic level per frequency band. The spec-
trum (that is, the mapping from frequencies to levels) can
be smoothed to find a “spectral envelope.” MFCCs de-
scribe this spectral envelope. They result from subjecting
the spectrum to an inverse Fourier transform or Discrete
Cosine Transform in frequency space. Before doing so, the
frequency scale is warped according to the physiologically-
based Mel frequency scale.

MFCCs are computed per audio frame. A music title
can be characterized by the distribution of MFCCs over
all frames. Typically, this distribution is described through
clusters found by k-means clustering or through a Gaussian
mixture model (GMM). In such a basic approach, rhythmi-
cal properties are not considered.

Pampalk et al. [20] evaluate how well different ap-
proaches can reproduce subjective classifications of tone
and genre collected from an online database. They find
that MFCCs may be outperformed by a novel set of features
called Spectrum Histogram. McKinney and Breebaart [16]
examine another set of features: low-level properties such
as pitch strength and zero-crossing rate; MFCCs; novel psy-
choacoustic features such as “roughness;” and temporal en-
velope fluctuations. All of these methods are augmented
by temporal features such as the modulation intensity of
MFCCs. The reliability with which a musical genre is de-
termined remains, however, at 74 percent. Aucouturier and
Pachet [2] report that current MFCC-based methods hit a
“glass ceiling” at about 65 percent precision.

Currently, visualizations of music collections rely on a
landscape metaphor: The songs are represented as points
in 2D, where the distance between these points corresponds
to the distance of the corresponding features. This requires
automatic layout methods such a Self-Organizing Map or
physical simulations of damped springs. For an up-to-date
survey see [3]. Similar approaches have also been followed

for other types of media, for instance to visually cluster
thumbnails of images according to their metadata [8].

Tzanetakis and Cook [24] have introduced a number of
different visualizations: TimbreGrams display the devel-
opment of a song as a horizontal bar of vertical stripes,
each stripe’s color encoding the features of a frame. Tim-
breSpace uses Principal Component Analysis to map the au-
dio features of one frame to a point in 3D space, TimbreBall
animates a 3D point according to the temporal progression
of a song’s features. GenreGrams determine the confidence
with which a song can be classified into twelve categories
such as “Male” and “Hip-Hop.” The twelve resulting confi-
dence values are mapped to the height of twelve 3D objects.

3 Icon generator

The simplicity of the icons is vital for searching through
large numbers of files [4]. Thus, we sought an easily com-
prehensible and aesthetically pleasing glyph that still con-
veys a relatively large number of data dimensions. The
mapping from parameters to appearance has to be continu-
ous; otherwise small differences in parameters may result in
overly prominent visual differences. Hence, many standard
generative techniques are ruled out, such as shape grammars
as applied for VisualIDs [13] or the retrieval of images from
a database such as used for the Semanticons [22]. We did
not aim to create abstract shapes such as VisualIDs or con-
crete icons such as Semanticons, but rather tried to find an
familiarly-looking but neutral glyph that is visually robust
enough to be used on small displays.

Our solution to this problem is a bloom-like shape. One
ring of petals turned out to look overly simple; thus, we
elected to create an additional inner ring of petals, whose
shape parameters are coupled in reverse to those of the outer
ring, see Figure 3. The inner and outer petals are formed by
hypotrochoid curves. The outer curve is filled with a radial
blend between two colors; the inner curve is filled with the
color used for the inner part of the outer one. We employ
the GDI+ application programming interface to render the
icons as filled polylines with antialiasing, highlights, and a
drop shadow.

The two RGB colors contribute six parameters. Four
further parameters control the number and the shape of the
petals. This leaves a total of eight independent parameters
(six for color, one for number, one for shape) controlling the
glyph.

4 Audio features

For every music file we extract the MFCC data of either
the complete length or—to save time—the data of the 50th
to the 59th second. To create representative audio excerpts

XIX Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'06)
0-7695-2686-1/06 $20.00 © 2006

Figure 3. The geometry of the inner and outer
petals is coupled to be controlled through
two parameters used as x (petal shape) and
y (number of petals) in this diagram.

a.k.a. audio thumbnails, one typically uses the time span
0:50 to 1:20 of a song. We found that even one third of
this length works well for Music Icons, cf. Section 7. The
parameters of the feature extraction are typical ones: fre-
quency range 40 to 8000 Hz, eight coefficients, frame size
of 1024 samples (i. e., 23 ms at a sampling rate of 44.1 kHz)
with Hann windowing and 50 percent frame overlap.

To condense the sequence of MFCCs (one set of MFCCs
per frame) into a concise statistical description, we form
eight clusters using k-means clustering, see Figure 4. This
algorithm is executed for 1000 iterations or until the clusters
become stable. Generally, 30 to 100 iterations suffice, de-
pending on whether only ten seconds or the complete music
file is analyzed. The centroids of the eight clusters form the
64 final features (eight centroids times eight MFCCs) that
represent every song. The eight clusters are ordered accord-
ing to the number of frames they comprise, so that also the
relative importance of the clusters is evident from the final
collection of features. Every one of the 64 feature values
is scaled and shifted so that the data from the training set
cover the range from 0.0 to 1.0. This normalization simpli-
fies further processing steps.

To read uncompressed audio data from MP3 files, we
employ the madlldlib [1] wrapper of the libmad library [26].
For the extraction of MFCCs we rely on a C library con-
tributed by Sven Fischer from Fachhochschule Oldenburg.
Other off-the-shelf options for feature extraction such as
Marsyas [25], the MPEG-7 reference implementation [18]
for Matlab, or JAudio [15] turned out to be too heavy-
weight or to be too difficult to integrate. Furthermore, we
wanted to first concentrate on a homogeneous set of features
such as MFCCs.

x.mp3

x.wav

x.mfcc

Data
Vector

Decompression

Trimming

MFCC Extraction

Clustering

Normalization

Preemphasis
Windowing
Amplitude Spectrum
Mel Filter Bank
Determination of Level; Logarithm
Discrete Cosine Transform

Figure 4. The feature extraction employs a
pipeline partially created from off-the-shelf li-
braries.

5 Mapping features to shapes

At the heart of our method lies a neural network that
maps the 64 audio features of a song to the eight parameters
of its icon. Initially, the network is trained to suit the user’s
preferences: The user chooses a representative selection of
music and defines an icon for every single of these songs.
Later, the network is applied to the audio features of a novel
song and produces the parameters of a corresponding icon.

To set the parameters of such an icon, the user is not
confronted with the internal parameters. Instead, the system
displays 15 preset icons created with extreme parameter set-
tings and 15 random variations of the currently selected icon
(preset or already mutated), see Figure 5. “Genetic” varia-
tions are a standard parameterless user interface for gener-
ative art, see for instance [17]. The preset icons as well as
the mutation operation are biased toward extreme values of
the parameters, so that the apparent differences of the icons
are maximized.

The neural net is realized using an off-the-shelf li-
brary [10]. It consists of an input layer of 64 neurons and
an output layer of 8 neurons. The activation function has a
sigmoid shape. The training is accomplished by backprop-
agation; 50 iterations (which can be computed in a fraction
of a second) suffice to achieve a stable output.

6 Integration with the operating system

We have developed a stand-alone software and an icon
handler shell plug-in for Microsoft R© Windows R© Explorer,
which operate together. The standalone software is used to

XIX Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'06)
0-7695-2686-1/06 $20.00 © 2006

Figure 5. During the training, the user has to
specify basic icons. To this end, our software
offers a set of presets and a set of genetic
variations.

select the training music as well as the corresponding icons
and to train the neural net. On demand, the software creates
icons for a list of MP3 files: It extracts the features, uses the
previously trained neural net to generate the icons’ param-
eters, and draws the icons into bitmaps of the four standard
sizes 16 × 16, 32 × 32, 48 × 48, and 64 × 64 pixels. The
software attaches a proprietary ID3 tag [19] to store such
a suite of four icons inside every processed MP3 file. This
allows a simple management of the icon data as opposed
to a special file cache. The embedded icons lead to only a
negligible increase in the files’ size: A typical file will be
several megabytes long, with the embedded icon contribut-
ing 30 kilobytes.

If the user opens a directory in Explorer that contains
MP3 files, the shell plug-in looks for embedded icons inside
every contained file. If no icon is found, a placeholder is
displayed; in this case, the file is added to the list of MP3
files to be subjected to icon generation by the standalone
software. Our proprietary ID3 tag contains an identifier that
allows to treat the icon as missing if the current neural net
has been trained differently.

7 Results

On an AMD AthlonTM 64 3000+ running at 1.81 GHz, to
generate icons for a song of four minutes’ length takes 3.7 s
for the decompression of the MP3 file into a WAV file, 6.4 s
to extract the MFCCs, 11.0 s to cluster them, and 0.17 s to
generate and embed the icons. If only ten seconds of the

music file are used, the times to extract and to cluster the
features reduce to 0.27 and 0.04 s, respectively. To trim the
WAV file to ten seconds incurs an overhead of 0.16 s, so that
one MP3 file can be processed completely in less than four
seconds. This speed gain does not lead to vital changes in
the icons’ appearance, see Figure 6.

Figure 6. Icons generated from complete MP3
music files (lines 1 and 3) do not differ dras-
tically from icons generated from ten-second
excerpts (lines 2 and 4).

To optimize the extracted features, we varied the set-
tings systematically: 5, 8, 13, and 19 MFCCs; 2, 4, 8,
and 16 clusters being formed; the most prominent 2, 4, 8,
and 16 of these clusters being fed into the neural net; 3 to
18 parameters used to generate an icon. The final settings
of 8 MFCCs, 8 clusters being both formed and used, and
8 parameters for the icons resulted from these experiments.

If one looks at the relation between artists and icons,
the results (see Figure 1) are immediately compelling. We
wanted to gain more insight on this relation and thus con-
ducted two tests with prospective users of the system. The
first test was on quantitative aural and visual distance, the
second test concerned similarity/dissimilarity. For the tests
we trained the system with five songs and icons and created
Music Icons for 64 other music titles from classics, folk,
techno/trance, rock, pop, and punk.

Our first hypothesis was that the user has a mental model
of “distances” in a perceptual “space of icons” and a percep-
tual “space of songs” and that distances in these spaces are
related. To test this hypothesis, we asked seven users (age
about 25; four female, three male) to specify for each of the
64 songs how well they match the five songs used for train-
ing. To learn about the user’s notion of what constitutes
“likeness” of music, we took care to not specifically ask for
a certain sort of likeness. For every single of the 64 test

XIX Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'06)
0-7695-2686-1/06 $20.00 © 2006

songs, the users had to assign a mark from the Likert scale
−−, −, 0, +, ++ to every of the 5 training songs. The
users had to fill in a similar questionnaire for the 64 gen-
erated icons with reference to the training icons. Treating
the Likert scale not as ordinal data, but approximately as
interval data, we mapped the Likert scale to the range of
numbers from −2 to 2 and computed the Pearson correla-
tion coefficient between the data collected for the icons and
for the music. Depending on the user, this was in the range
of 0.45 to 0.55. Thus, the results from the first test signify a
certain effect, but not an effect as drastic as a quick glance
onto the results in Explorer seems to indicate.

The effect may be limited due to several reasons: Like-
ness of music is a very subjective notion which refers to
acoustic features as well as the epoch, the text, the per-
former, and the listener’s biography. On top of that, the
mental model of music and that of imagery may not resem-
ble linear space. It may rather behave like a strongly curved
manifold or like a network, so that it’s impossible to rea-
sonably specify if a song A is 50 percent of a song B plus
30 percent of a song C plus 20 percent of a song D.

Thus, we came up with a second, more general hypoth-
esis: The user has an internalized notion of similarity of
timbre and a internalized notion of similarity of (abstract)
icons, and both notions can be mapped onto each other. To
test this hypothesis, to more closely model an actual task,
and to circumvent many of the issues found in the first test,
we designed a different experiment: Using the same song
and icon material as before, we asked test persons to visu-
ally form clusters of the 64 icons, without knowing song
titles or other information. They could use any number of
clusters they considered appropriate and were allowed to
leave a set of spare icons that don’t fit to anything else. Fig-
ure 7 indicates that the test users agreed strongly about vi-
sual likeness. The differences point toward users applying
different thresholds for what constitutes “similar” icons.

As Figure 8 demonstrates, the icon clusters formed this
way appear to be very reasonable if one looks at the artists’
names, which were hidden from the test users. Titles of a
single album were only rarely scattered over several clus-
ters. But even in these cases the different assignments
seemed to make sense because the styles of the songs were
indeed drastically different. To gain quantitative evidence,
we tested whether the icon clusters formed visually by a
user corresponded to music clusters in this user’s percep-
tion. To this end, we selected three or four songs from one
cluster by random, added one song from another cluster by
random and offered these songs to the user in a random se-
quence. The user was asked to spot the song that sounded
different from the others.

If there was no relationship at all, the probability to spot
the song from the other cluster would be 0.25 or 0.2, de-
pending on whether we offered four or five songs. How-

User A User DUser CUser B

Figure 7. The users form similar clusters from
the icons. In this excerpt of the data, the hor-
izontal lines represent songs and the blocks
represent clusters. The order of the songs
has been adapted to reduce visual clutter.

ever, the probability measured in our experiments was con-
sistently well above 0.5, see Table 1. This rate seems to be
close to what can be hoped for, given the current recognition
rates found in content-based music retrieval systems, see
Section 2. The data even lead us to suspect that the recog-
nition rate improves if more songs are presented. Here, the
chances to pick the single mismatching song by random are
even smaller; however, we suppose that the larger number
of music files makes it easier for the user to understand the
pattern—to learn what the clusters he or she has formed vi-
sually mean acoustically.

8 Conclusion and outlook

We have presented a complete system to support search-
ing for similar music or for different music inside standard
file views with all their amenities. It is based on a synaes-
thetic relation between icons and timbre. The software does
not form clusters of songs. Rather, it offers clues to the user,
adhering to the spirit of visual data mining. The clues vary
smoothly with the underlying features but behave in a quali-
tative manner. They do not resemble a classic measurement
device with a clear scale ranging from 0 to 100. As our
tests with prospective users demonstrate, the visual clues
we chose carry great acoustic importance. They do not only
allow to distinguish between genres, but also between sub-
types of a given genre, such as classical music performed
on a piano or by a full orchestra.

The system adapts to the user in that he or she can se-
lect training music and training icons. Thus, it can cater
for narrow selections of music and can take the visual per-
ception of the user into account. For instance, spiky petals
may be used for harsh sounds; a color-blind user may cre-
ate icons with strong contrast in brightness; a user suffering

XIX Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'06)
0-7695-2686-1/06 $20.00 © 2006

User Clusters Formed Choice Presented Recognition Rate
A (male, 30 y) 23+19+10+6+5, unassigned: 1 1 of 4 8 of 15
B (male, 27 y) 27+15+6+5+5+4+2 1 of 4 6 of 15
C (male, 37 y) 23+13+7+6+4+4+2, unassigned: 5 1 of 5 8 of 11
D (male, 55 y) 26+17+11+10 1 of 5 10 of 12
E (female, 26 y) 41+5+4+7+7 1 of 5 6 of 7
F (female, 23 y) 22+9+6+5+4+4+3+2+2+2, unassigned: 5 1 of 5 9 of 11

Table 1. The users had to visually cluster the icons (Clusters Formed), and were then presented a
series of playlists in which they had to spot the song that sounds different from a set of four or five
(Choice Presented). The number of successful attempts was counted (Recognition Rate).

Figure 8. The test users (in this case: user
D) had to cluster the icons visually. They did
not see the titles of the songs nor did they
see the training songs, which are given for
reference in the lower right of this diagram.

from synaesthesia may associate soul ballads with the color
orange. Such personalized settings should result in even
higher recognition rates.

Adaptivity also works in the other direction: The user
learns to “read” the icons in terms of music. In particu-
lar, our tests with smaller and larger example sets for clus-
ters of songs indicate that users can understand the techni-
cal implementation of acoustic “similarity.” This turns the
vague concept of “music like . . . ” into an algorithmic def-
inition. Actually, what the phrase “something sounds sim-
ilar” means in terms of human perception is very hard to
define. Similarity is also difficult to define for icons. This is
why we elected to do user studies: We wanted to learn if our
technical implementation reflects crucial aspects of human
perception—which it obviously does.

On the technical side, to extract features and generate
icons is ideally suited as a background task for a multi-core
processor. The speed of the extraction can become an issue
if one plugs in a memory device with thousands of music ti-
tles on it. In this case, one needs to spend some minutes on
some other task and then may return to the music files, now
with icons. Currently, we are working on a two-level ap-
proach where the icon generator first creates icons quickly
based on a ten-second segment of every song (possibly op-
erating directly on the compressed MP3 data or using an
MP3 splitter tool to extract the ten-second portion); later the
icon generator processes the full length of every song to re-
place the quick-and-dirty icon it has generated before. Fur-
thermore, we envision a plug-in architecture for both icon
generation and feature extraction, similar to the visualiza-
tion plug-ins found in current music player software.

To also display Music Icons for files on read-only disks,
one may create a proprietary icon cache on some system
disk instead of embedding the icons to the MP3 files. In
total, however, the embedded icons offer great advantages
over a central icon cache. For instance, MP3 files with em-
bedded icons can also be used on devices with low comput-
ing power such as mobile phones and PDA computers. We
aim at providing corresponding extensions to the file brows-
ing software of such devices.

Whereas Music Icons are currently based on spectral fea-
tures, future work may address rhythmic features as well.
Applications such as DJing may require to find songs with
similar tempo or with similar rhythmic patterns.

Acknowledgments

P. Kolhoff and J. Preuß have been supported by
Microsoft R© Germany. J. Loviscach’s work was partially
funded by grant 1742A04 of the German Ministry of Ed-
ucation and Research (BMBF). The views and conclusions
contained in this document are those of the authors.

XIX Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'06)
0-7695-2686-1/06 $20.00 © 2006

References

[1] Arbinger Systems. DLL to decode MP3 to
WAV/PCM. http://www.codeproject.com/audio/
madlldlib.asp, 2004.

[2] J.-J. Aucouturier and F. Pachet. Improving timbre sim-
ilarity: How high’s the sky? Journal of Negative Re-
sults in Speech and Audio Sciences, 1(1), 2004.

[3] S. Baumann. Visualization for music IR. ISMIR 2005
Tutorial, 2005.

[4] M. D. Byrne. Using icons to find documents: simplic-
ity is critical. In CHI ’93: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
pages 446–453, 1993.

[5] P. Cano, E. Gómez, F. Gouyon, P. Herrera, M. Kop-
penberger, B. Ong, X. Serra, S. Streich, and N. Wack.
ISMIR 2004 audio description contest. Music Tech-
nology Group, Universitat Pompeu Fabra, Technical
Report MTG-TR-2006-02, 2006.

[6] H. Chernoff. Using faces to represent points in k-
dimensional space graphically. Journal of the Ameri-
can Statistical Association, 68:361–368, 1973.

[7] M. C. Chuah and S. G. Eick. Glyphs for software vi-
sualization. In WPC ’97: Proceedings of the 5th Inter-
national Workshop on Program Comprehension (WPC
’97), pages 183–191, 1997.

[8] M. Dontcheva, M. Agrawala, and M. Cohen. Metadata
visualization for image browsing. UIST 2005 Demon-
stration, 2005.

[9] D. S. Ebert, R. M. Rohrer, C. D. Shaw, P. Panda, J. M.
Kukla, and D. A. Roberts. Procedural shape genera-
tion for multi-dimensional data visualization. In Data
Visualization ’99, pages 3–12, 1999.

[10] F. Fleurey. C# neural network library. http://franck.
fleurey.free.fr/NeuralNetwork/index.htm, 2002.

[11] D. A. Keim, M. Sips, and M. Ankerst. Visual data-
mining techniques. In C. D. Hansen and C. Johnson,
editors, Visualization Handbook, pages 831–843. Aca-
demic Press, Burlington, MA, 2004.

[12] B. Kleiner and J. A. Hartigan. Representing points in
many dimensions by trees and castles. Journal of the
American Statistical Association, 76:260–269, 1981.

[13] J. P. Lewis, R. Rosenholtz, N. Fong, and U. Neumann.
VisualIDs: automatic distinctive icons for desktop in-
terfaces. ACM Trans. Graph., 23(3):416–423, 2004.

[14] J. M. Martnez, R. Koenen, and F. Pereira. MPEG-7:
the generic multimedia content description standard,
part 1. IEEE MultiMedia, 9(2):78–87, 2002.

[15] D. McEnnis, C. McKay, I. Fujinaga, and P. Depalle.
JAudio: a feature extraction library. In ISMIR 2005:
Proceedings of the 6th International Conference on
Music Information Retrieval, pages 600–603, 2005.

[16] M. F. McKinney and J. Breebaart. Features for audio
and music classification. In ISMIR 2003: Proceedings
of the 4th International Conference on Music Informa-
tion Retrieval, pages 151–158, 2003.

[17] J. Meyer-Spradow and J. Loviscach. Evolutionary de-
sign of BRDFs. In Eurographics 2003 Short Paper
Proceedings, pages 301–306, 2003.

[18] MPEG. MPEG-7 eXperimentation Model.
http://www.lis.ei.tum.de/research/bv/topics/mmdb/
e mpeg7.html, 2002–2005.

[19] M. Nilsson and J. Sundström. ID3v2. http://
www.id3.org/, 1998–2005.

[20] E. Pampalk, S. Dixon, and G. Widmer. On the evalu-
ation of perceptual similarity measures for music. In
DAFX-03: Proceedings of the 6th Int. Conference on
Digital Audio Effects, pages 7–12, 2003.

[21] W. Ribarsky, E. Ayers, J. Eble, and S. Mukherjea.
Glyphmaker: Creating customized visualizations of
complex data. Computer, 27(7):57–64, 1994.

[22] V. Setlur, C. Albrecht-Buehler, A. A. Gooch,
S. Rossoffa, and B. Gooch. Semanticons: Visual
metaphors as file icons. Computer Graphics Forum,
24(3):647–656, 2005.

[23] R. Typke, F. Wiering, and R. C. Veltkamp. A survey
of music information retrieval systems. In DAFX-05:
Proceedings of the 8th Int. Conference on Digital Au-
dio Effects, pages 153–160, 2005.

[24] G. Tzanetakis and P. Cook. 3D graphics tools for
sound collections. In DAFX-00: Proceedings of the
COST G-6 Conference on Digital Audio Effects, pages
115–118, 2000.

[25] G. Tzanetakis and P. Cook. Marsyas: a framework
for audio analysis. Organized Sound, 3(4):169–175,
2000.

[26] Underbit Technologies. MAD: MPEG audio decoder.
http://www.underbit.com/products/mad/, 2004.

XIX Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'06)
0-7695-2686-1/06 $20.00 © 2006

